首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   4篇
  国内免费   13篇
  2022年   1篇
  2019年   2篇
  2018年   1篇
  2014年   2篇
  2013年   2篇
  2011年   6篇
  2009年   3篇
  2008年   3篇
  2007年   7篇
  2006年   7篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2001年   5篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
51.
Wetlands are important for the protection of water quality of rivers and lakes, especially those adjacent to agricultural landscapes, by intercepting and removing nutrients in runoff. In this study, the 15N tracer technique was applied to study the distribution and fate of anthropogenic nitrogen (15N-fertilizer) in Calamagrostis angustifolia Kom wetland plant-soil microcosms to identify the main ecological effects of it. 15NH415NO3 solution (14.93 mg N/L, 20.28 at.% 15N) was added to each microcosm of the first group, which was approximate to the current nitrogen concentration (CNC) of farm drainage, and 29.86 mg NIL 15NH415NO3 solution was added to another group, which was approximate to the double nitrogen concentration (DNC) of farm drainage, while no nitrogen (NN) was added to the third group. The results suggest that the Input of anthropogenic nitrogen has positive effects on the biomass and total nitrogen content of plant, and the positive effects will be elevated as the increase of its Input amount. The increase of 15N-fartilizer can also elevate its amounts and proportions in plant nitrogen. Soil nitrogen is still the main source of plant nitrogen, but its proportion will be reduced as the increase of 15N-fertilizer. The study of the fate of 15N-fartilizar indicates that, in CNC treatment, only a small proportion is water-dissolved (0.13±0.20%), a considerable proportion is soil-immobilized (17.02±8.62%), or plant-assimilated (23.70±0.92%), and most is lost by gaseous forms (59.15±8.35%). While in DNC treatment, about 0.09±0.15% is water-dissolved, 15.33±7.46% is soil-immobilized, 23.55±2.86% is plant-assimilated, and 61.01±5.59% is lost by gaseous forms. The double input of anthropogenic nitrogen can not elevate the proportions of plant-assimilation, soil-immobilization and water-dissolution,but it can enhance the gaseous losses.  相似文献   
52.
53.
A non-toxic phase separation method was developed for microencapsulation of inoculum used in biological control. Aqueous sodium alginate or gelatin and agar was mixed with inocula of various biopesticides and emulsified in a mixture of corn oil, n-hexadecane, and lecithin. Gelatin and agar globules gelled in the emulsion; alginate globules gelled after settling into a lower phase of aqueous CaCl2. A layer of gelatinous material thus surrounded the inoculum as 'capsules'. Mixing with n-hexadecane reduced the specific gravity and surface tension of the oil, allowing aqueous extraction of the capsules. Successful extraction of alginate capsules depended upon lecithin (>0.17%), n-hexadecane (>30%), and CaCl2 (>0.01 M) concentrations. Alginate-encapsulated macroconidia of Fusarium avenaceum caused 23±3% leaf area damage to seedlings of marsh reed grass, versus 4±3% for unformulated controls. In green foxtail seedlings, gelatin and agar-encapsulated conidia of Bipolaris sorokiniana caused 21.3 vs. 7.9 lesions per plant for encapsulated versus unformulated conidia. Mortality of Douglas-fir tussock moth larvae caused by a nuclear polyhedrosis virus was delayed when 23 polyhedral inclusion bodies (PIB) were incorporated into alginate capsules, but it proceeded normally for 2.3 PIB/capsule, where efficacy was also higher versus positive controls. Microencapsulation enhances the activity of biological control agents and protects them from adverse conditions.  相似文献   
54.
拂子茅(Calamagrostis epigejos(L.)Roth)为根茎型多年生禾草,具细长根茎。为了探讨拂子茅在异质性水分环境中的表型差异,在内蒙古鄂尔多斯高原的毛乌素沙地对拂子茅由母株、子株组成的分株对给予了高水、低水两种不同的异质性土壤水分处理。实验结果表明:土壤水分状况显著地影响着拂子茅分株的生长表型。在高土壤水分条件下,拂子茅的分株产生的根茎、新生后代分株较多,并使生物量主要分配于地上部分,地上生物量积累多;在低土壤水分条件下,拂子茅分株产生较少的根茎与新生后代分株,并且分配到根系的生物量明显增大。在具有一定对比度的异质性土壤水分环境中,拂子茅分株并不因相连的其他分株所处的土壤水分状况而在根茎生长、新生后代分株的产生和生物量分配等特征上,与同质环境中的具有相同土壤水分状况的分株相比,有明显差异。这些结果揭示:拂子茅仅以分株的形式对异质性水分供应发生表型反应;相连的克隆分株在向顶向和向基向这两个基本方向上,不能对另一分株的土壤水分状况在生K表型上发生反应,它们在水分关系上可能是相互相对独立的。分株的相对独立可能有利于在气候干旱、扰动强烈的沙地环境中实现风险分摊,提高基株的存活几率。  相似文献   
55.
风沙移动与植物生物量的关系以及植物固沙能力研究   总被引:11,自引:0,他引:11  
荒漠化是植被覆盖退化、风蚀水蚀加剧的过程。适应流沙条件的植物能够逆转荒漠化(沙化)过程,能够固沙。可用于研究植物固沙能力的数据不多。为了研究与植物生物量相关的植株周围的“风成沙移置(wind-induced sand diplacement)”,在研究中,将植株周围的风沙移动与3种植物的生物量配置格局联系起来,并发展了一种新方法,以对植物固沙能力进行实验研究,风沙移动与生物量的关系不是线性的。除了植物生物量大小外,种类特异的植物特征,如生物量配置格局和植物枝叶的结构特征,在确定植物固沙能力方面也很重要。  相似文献   
56.
三江平原小叶章湿地生态系统硫的生物地球化学循环   总被引:3,自引:0,他引:3  
以三江平原小叶章湿地生态系统为研究对象,应用分室模型研究了硫在大气-土壤-植物系统各分室中的分布及循环过程。结果表明,在植物-土壤系统内,土壤是主要的贮存库和流通介质,有97.78%的硫贮存在土壤中,且主要以有机硫的形态存在,2.22%的硫贮存在植物中。在植物亚系统中,根是主要的贮库,79.60%的硫贮存在根中。湿地植物地上部分吸收的总S量为0.75gS/m^2;向地下再转移的总S量为0.24gS/m^2,向枯落物S库转移的总S量为0.51gS/m^2;根吸收的总S量为3.76gS/m^2;根向土壤S库转移的总S量为3.07gS/m^2;现存枯落物中的总S量为0.75gS/m^2;枯落物向土壤S库的转移量最低为0.52gS/m^2·a。输入和输出过程的研究表明,小叶章湿地生态系统在生长季(5-9月份)向大气排放H2S的量为1.42mgS/m^2,从大气吸收COS的量为1.83mgS/m^2;通过大气降水输入到生态系统中的硫为4.85mgS/m^2,其差值为5.26mgS/m^2,这表明硫在小叶章湿地生态系统中处于累积状态,湿地存在潜在的酸化趋势。  相似文献   
57.
Oudejans  A.M.C.  Nijssen  A.  Huls  J.S.  Rozema  J. 《Plant Ecology》2001,154(1-2):37-48
Since early May 1997 dune-grassland vegetation in the Netherlands has been exposed to enhanced levels of ultraviolet-B (UV-B) radiation. Expected increases in the amount of biologically effective UV-B (UV-BBE) upon a reduction of the stratospheric ozone layer with 15% were calculated and artificially supplemented.In June and September 1998, above- and belowground vegetation samples were taken. Of the dominant species Calamagrostis epigeios and Carex arenaria aboveground mass accumulation, leaf weight (LW), leaf area (LA), specific leaf area (SLA) and tiller number were assessed separate from the remaining vegetation.The results of our study indicate alterations in the vegetation structure due to UV-B supplementation. In June, a significant reduction due to UV-B supplementation in number of tillers and aboveground dry weight per soil area unit was found for C. epigeios. As C. epigeios is the most dominant species of the dune-grassland, these effects indicate a change in vegetation structure due to UV-B enhancement. Indications of UV-B effects on other parameters, such as the number of tillers of C. arenaria and aboveground plant dry weight of the group of species other than C. epigeios and C. arenaria, may also represent changes in vegetation structure. The LA and LW data show the same patterns as the mass accumulation trends. No significant UV-B effects on the SLA of the species or of the total vegetation could be found.Trends in patterns of species dry weight accumulation and partitioning of dry weight between species groups are different in June and September. This may indicate seasonal dependence of UV-B responses. Also, the consistently reducing trend in total and aboveground plant dry weight may indicate deleterious effects of UV-B on total plant matter accumulation. Possible causes of observed trends and effects are discussed.  相似文献   
58.
59.
From studies on living plant tissues it has been inferred that elevated UV‐B radiation could negatively affect litter quality and subsequent decomposition. However, in general, the effects of UV‐B radiation on litter chemistry and decomposition reported in the literature are variable and are often only marginally (if at all) significant. This might be due to the ecologically unrealistic conditions under which these experiments were performed. We investigated the effects of elevated UV‐B radiation on litter quality and subsequent decomposition on initial litter chemistry and long‐term (2 years) decomposition of freshly senesced Carex arenaria and Calamagrostis epigejos leaf litter under ecologically realistic conditions. This material was collected from a dune grassland that had received UV‐B radiation treatments for three growing seasons. It was then used in a 2‐year decomposition study using litter bags. We found no significant effects of elevated UV‐B radiation on any of the litter chemistry parameters in either of the two species, nor did we find significant effects on litter decomposition. However, we did find significant differences in litter decomposition between the species. These differences were related to the interspecific differences in litter chemistry, particularly the litter phenolics concentration. These results show that litter quality and decomposition in dune grasslands are, also under ecologically realistic conditions, not affected by UV‐B radiation. Instead, litter decomposition is determined by constitutive interspecific differences in litter chemistry. In conclusion, with our results added to the already existing literature, the preponderance of evidence now clearly suggests that elevated UV‐B radiation has very little, if any, impact on litter quality and subsequent decomposition in real ecosystems.  相似文献   
60.
TheCalamagrostis tashiroi group was taxonomically revised by examination of population samples from four areas and herbarium specimens. Results of the morphological examination, coupled with observations of the habitats, showed that three taxa with distinct morphological features and definite geographical ranges can be recognized in this group. They were disposed asCalamagrostis tashiroi subsp.tashiroi, C. tashiroi subsp.sikokiana, stat. nov. andC. onibitoana, sp. nov.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号