首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4167篇
  免费   183篇
  国内免费   268篇
  4618篇
  2024年   6篇
  2023年   65篇
  2022年   68篇
  2021年   98篇
  2020年   126篇
  2019年   117篇
  2018年   94篇
  2017年   85篇
  2016年   111篇
  2015年   125篇
  2014年   140篇
  2013年   278篇
  2012年   119篇
  2011年   176篇
  2010年   123篇
  2009年   216篇
  2008年   189篇
  2007年   239篇
  2006年   215篇
  2005年   162篇
  2004年   145篇
  2003年   173篇
  2002年   145篇
  2001年   98篇
  2000年   72篇
  1999年   89篇
  1998年   78篇
  1997年   85篇
  1996年   84篇
  1995年   104篇
  1994年   78篇
  1993年   81篇
  1992年   79篇
  1991年   62篇
  1990年   53篇
  1989年   93篇
  1988年   39篇
  1987年   48篇
  1986年   34篇
  1985年   38篇
  1984年   33篇
  1983年   23篇
  1982年   38篇
  1981年   25篇
  1980年   15篇
  1979年   17篇
  1978年   19篇
  1977年   10篇
  1976年   4篇
  1973年   3篇
排序方式: 共有4618条查询结果,搜索用时 31 毫秒
71.
Aquatic ecosystems depend on terrestrial organic matter (tOM) to regulate many functions, such as food web production and water quality, but an increasing frequency and intensity of drought across northern ecosystems is threatening to disrupt this important connection. Dry conditions reduce tOM export and can also oxidize wetland soils and release stored contaminants into stream flow after rainfall. Here, we test whether these disruptions to terrestrial–aquatic linkages occur during mild summer drought and whether this affects biota across 43 littoral zone sites in 11 lakes. We use copper (Cu) and nickel (Ni) as representative contaminants, and measure abundances of Hyalella azteca, a widespread indicator of ecosystem condition and food web production. We found that tOM concentrations were reduced but correlations with organic soils (wetlands and riparian forests) persisted during mild drought and were sufficient to suppress labile Cu concentrations. Wetlands, however, also became a source of labile Ni to littoral zones, which was linked to reduced abundances of the amphipod H. azteca, on average by up to 70 times across the range of observed Ni concentrations. This reveals a duality in the functional linkage of organic soils to aquatic ecosystems whereby they can help buffer the effects of hydrologic disconnection between catchments and lakes but at the cost of biogeochemical changes that release stored contaminants. As evidence of the toxicity of trace contaminant concentrations and their global dispersion grows, sustaining links among forests, organic soils and aquatic ecosystems in a changing climate will become increasingly important.  相似文献   
72.
Effect of salinity on phosphate accumulation and injury in soybean   总被引:5,自引:0,他引:5  
Many soybean [Glycine max (L.) Merr.] genotypes that are grown in solution cultures are highly sensitive to the combination of both salinity and inorganic phosphate (Pi) in the substrate. This effect has been observed on numerous occasions on plants grown in a saline medium that contained a substantial amount of Ca (i.e., CaCl2/NaCl=0.5 on a molar basis). Because Ca is important in regulating ion transport and membrane permeability, solution culture experiments were designed to examine the effects of various concentrations of Pi and ratios of CaCl2/NaCl (0 to 0.5 on a molar basis) at a constant osmotic potential (−0.34 MPa) on this adverse interaction. Four soybean cultivars (‘Lee’, ‘Lee 74’ ‘Clark’ and ‘Clark 63’) were tested. No adverse salinity x Pi interaction was found on Lee at any ratio and leaf P and Cl were maintained below 300 and 200 mmol kg−1 dry wt, respectively. Clark, Clark 63 and Lee 74 soybean plants, on the other hand, were severely injured by solution salinity (−0.34 MPa osmotic potential) when substrate Pi was ≥0.12 mM. Reduced substrate Ca did not intensify the salinity x Pi interaction. On the contrary, the onset of injury was hastened and more severe with increased CaCl2/NaCl ratios in isotonic solutions. Shoot and root growth rates decreased as injury increased. Leaf P concentrations from these cultivars grown in saline solutions with 0.12 mM Pi were excessive (>600 mmol kg−1 dry wt) compared with concentrations commonly found in soybean leaf tissue yet they were independent of the severity of injury. Since leaf Cl increased wiht increased CaCl2/NaCl ratio, we suspect that the severity of foliar injury was related to the combined effects of excessive P and Cl within the tissue. Lee 74, the only injured cultivar examined that excluded Cl from its leaves, was less sensitive than either Clark cultivar and its injury was characteristically different. Other ion interactions were reported that may have played a role in injury susceptibility.  相似文献   
73.
Pancreatic islets of the Syrian golden hamster were maintained in culture for extended periods of time. Toxicity of streptozotocin in these cultures was evaluated by measurement of insulin secretion. Exposure of islets to 1 or 2 mM streptozotocin immediately following isolation resulted in a permanent and dose-related inhibition of insulin secretion. This was accompanied by islet disruption as observed by phase-contrast microscopy. Culture of islets for 24 hours before streptozotocin exposure afforded protection from toxicity. For example, exposure of freshly isolated islets to 2 mM streptozotocin resulted in complete destruction of beta cells, whereas islets similarly exposed after a 24 hr culture period continued to secrete insulin for many months. Islets maintained in culture for one week before exposure to 0.1–0.5 mM streptozotocin, however, became more sensitive than freshly isolated islets. Repeated weekly exposure of cultured islets to a non-toxic concentration (0.1 mM) resulted in sustained suppression of insulin secretion after 11 weeks.  相似文献   
74.
Abstract

Arsenic, cadmium, lead, and mercury in fish is the result of long-term biomagnification in the food chain and is of public concern, due to the toxicity they engender. The objective of this research was to determine the concentrations of arsenic, cadmium, lead, and mercury in 13 species of marine fish broadly commercialized in Aracaju, SE, Brazil and to evaluate the risks of fish consumption associated with these trace elements, using the Target Hazard Quotient (THQ). As, Cd, and Pb levels were measured with inductively coupled plasma mass spectrometry (ICP-MS), and mercury was analyzed via cold vapor atomic absorption spectrometry. The results indicate a large variability in concentrations for arsenic (0.07–2.03?mg kg–1) and mercury (0.01–1.44?mg kg–1), associated with the animal dietary category. Cadmium (0.04–0.19?mg kg–1) and lead (<0.01–0.45?mg kg–1), on the other hand showed a mild variability. None of the evaluated specimens had As, Cd, and Pb THQ values higher than 1. The THQ values for mercury were higher but indicated no consumption risk, except for amberjack, and snook fish. Overall THQ indicates lower risk of consumption in fish that are at the base of the food chain, than in those that are top predators.  相似文献   
75.
目的:研究扶正化积方对H22荷瘤小鼠化疗的增效减毒作用。方法:建立小鼠皮下H22移植性肝癌模型,随机分为4组:模型对照组、FZHJF组(40.95g/kg)、5-氟尿嘧啶组(5-FU)(0.2 m L/10g)和联合给药组(FZHJF+5-FU),连续给药12 d后,采集肿瘤与脏器称重并计算抑瘤率、肝脏指数、脾脏指数和胸腺指数;并对各组肿瘤外观和肿瘤病理进行分析。结果:肿瘤病理结果显示均为典型的肝细胞癌。与模型对照组比较,其余三组瘤重均显著减小(P0.05);而联合用药组的瘤重显著小于5-FU组和FZHJF组(P0.05),肿瘤外观图也显示联合给药组瘤块小于FZHJF组和5-FU组。扶正化积方单独使用的抑瘤率为40.5%,联合5-FU后,抑瘤率达到66.7%,大于两者合并用药后的理论相加效应值65.6%;与5-FU组比较,FZHJF组与联合用药组的体质量显著增加(P0.05),FZHJF组与联合用药组的胸腺指数与脾脏指数均显著高于模型对照组和5-FU组(P0.05)。结论:扶正化积方对H22肝癌荷瘤小鼠的化疗具有增效和减毒双重作用。  相似文献   
76.
Cell-wall (CW) pectin content and its degree of methylation in root apices of selected maize cultivars were studied in relation to genotypic Al resistance. Maize cultivars differing in Al resistance were grown in nutrient solution treated with or without Al, and pectin content of the root tips was determined. Control plants did not differ in pectin content in the 5 mm root apex. Al treatment increased the pectin content of the root apex in all cultivars but more prominently in the Al-sensitive cultivars. Pectin and Al contents in 1 mm root sections decreased from the apex to the 3–4 mm zone. Pectin contents of the apical root sections were consistently higher although significantly different only in the 1–2 mm zone in the Al-sensitive cv Lixis. Al contents in most root sections were significantly higher in cv Lixis than in Al-resistant cv ATP-Y. Localization of pectins by immunofluorescence revealed that Al-sensitive cv. Lixis has a higher proportion of low-methylated pectin and thus a higher negativity of the cell wall than Al-resistant cv ATP-Y. This is in agreement with the higher Al content and Al sensitivity of cv Lixis. It is concluded that differences in CW pectin and its degree of methylation contribute to genotypic differences in Al resistance in maize in addition to the release of organic acid anions previously reported.  相似文献   
77.
Zinc toxicity on photosynthetic activity in cells of Synechocystis aquatilis f. aquatilis Sauvageau was investigated by monitoring Hill activity and fluorescence. The oxygen‐evolving activity decreased to about 80% of the initial value after exposure to 0.1 mM ZnSO4 for 1 h. The PSII activity was inhibited by 40% in the presence of zinc concentrations ranging from 0.5 to 5.0 mM, suggesting that the metal effect is limited by zinc uptake. The fluorescence capacity (Fmax–F/Fmax) decreased from 0.57 to 0.35 and 0.20 in Zn‐treated cells for 15 and 60 min, respectively, thus providing evidence for rapid inactivation of electron transport at PSII. Zinc treatment promoted a rapid increase in PSII fluorescence that was counteracted by addition of 1,4‐benzoquinone, indicating that electron transfer at the reducing side of the PSII reaction center is arrested by zinc. Furthermore, a decline in the fluorescence yield could be observed after 1 h of zinc treatment as well as when Zn‐treated cells were excited in presence of 3‐(3′,4′‐dichlorophenyl)‐1,1‐dimethylurea. Under these conditions, zinc did not affect energy transfer from phycobilisomes to PSII, and the gradual quenching of PSII fluorescence may be due to a decrease in electron flow on the donor side of PSII. However, the 20% increase in the minimal fluorescence intensity (Fo) in parallel to the absence of changes in the maximal fluorescence intensity (Fmax), observed in the first hour of zinc treatment, could also suggest a metal‐induced decline in the energy transfer from PSII‐chl a antenna to the PSII reaction center.  相似文献   
78.
The response of Potamogeton crispus L. breakdown to controlled doses of different levels of chlorine and chlorine + ammonia was investigated over two years in outdoor experimental streams. In 1985, downstream riffles of 2 streams were dosed (observed in-stream concentrations) at ca. 10 μg/L Total Residual Chlorine (TRC), one stream at 64 μg/L TRC and one stream at 230 μg/L TRC. Two control streams were not dosed and the upstream riffles of each stream served as within stream controls. In 1986, the downstream riffle of one stream was dosed at 70 μg/L TRC and a second stream was dosed at 200 μg/L TRC. Four streams were also dosed with 2.5 mg/L NH3-N: one stream with no chlorine, one stream with ca. 10 μg/L TRC, one with 56 μg/L TRC, and one with 150 μg/L TRC. A seventh stream was dosed for 2 h at 2000 μg/L TRC and 2.5 mg/L ammonia and then allowed to recover (recovery stream). Each year, litter decomposition (degree day k values) was measured during two 35 day trials (Jun–Jul and Aug–Sep). In 1985, when streams were dosed with chlorine alone, decomposition was significantly reduced with the high (230 μg/L TRC) chlorine dose. Downstream decomposition was 27% (Jun–Jul) and 59% (Aug–Sep) of the upstream (control) rate. No other chlorine effects were found during this period. In Jun–Jul 1986, there was significantly lower decomposition in the downstream dosed sites of the 200 μg/L TRC alone stream, the 146 μg/L TRC + ammonia stream and the recovery stream; downstream decay rates were (respectively) 56%, 42% and 64% of the upstream control sites. No other up-down pairs were different in July 1986. In Aug–Sep, all three streams with chlorine + ammonia (6, 56 and 146 μg/L TRC + 2,5 mg/L ammonia) and the 70 μg/L TRC alone stream had significantly lower decomposition rates in the downstream dosed sites. For these streams, downstream decay rates ranged from 46% (high chlorine + ammonia) to 73% (low chlorine + ammonia) of the upstream control rates. No other up-down pairs were different during this trial. Up and downstream sites of the stream dosed with 2.5 mg/L ammonia alone were nearly identical for both trials (< 3% difference). These results indicate that TRC at less than 250 μg/L can significantly reduce litter decomposition and strongly suggest that addition of ammonia to chlorinated water can increase the toxic effect of chlorine. currently at the Department of Fisheries and Wildlife currently at the Department of Fisheries and Wildlife  相似文献   
79.
We have recently reported that exposure of pregnant rats to 60 Hz at field strengths up to 0.5 mT during the entire period of pregnancy did not induce any biologically significant effects on both pregnant dams and embryo-fetal development. The present study was carried out to investigate the potential effects of gestational and lactational MF exposure on pregnancy, delivery, and lactation of dams and growth, behavior, and mating performance of their offspring in rats. Timed-pregnant female Sprague-Dawley (SD) rats (24/group) received continuous exposure to 60 Hz magnetic field (MF) at field strengths of 0 (sham control), 5 microT, 83.3 microT, or 0.5 mT. Dams received MF or sham exposures for 21 h/day from gestational day 6 through lactational day 21. Experimentally generated MF was monitored continuously throughout the study. No exposure-related changes in clinical signs, body weight, food consumption, pregnancy length, and necropsy findings were observed in dams. Parameters of growth, behavior, and reproductive performance of offspring showed no changes related to MF exposure. There were no adverse effects on embryo-fetal development of F2 offspring from dams exposed to MF. In conclusion, exposure of pregnant SD rats to 60 Hz at field strengths up to 0.5 mT from gestational day 6 to lactational day 21 did not produce biologically significant effects in dams, F1 offspring, or F2 fetuses.  相似文献   
80.
The present study was carried to evaluate the protective effects of melatonin alone and vitamin E with selenium combination against high dose cadmium-induced oxidative stress in rats. The control group received subcutanous physiological saline. The first study group administered cadmium chloride (CdCl2) by subcutaneous injection of dose of 1 mg/kg. The second study group administered cadmium plus vitamin E with selenium (1 mg/kg sodium selenite with 60 mg/kg vitamin E); the third study group administered cadmium plus 10 mg/kg melatonin (MLT); the fourth study group administered CdCl2 plus a combination of melatonin in addition to vitamin E and selenium for a month. Determination levels of plasma malondialdehyde (MDA), glutathione peroxidase (GSH-Px), blood superoxide dismutase (SOD), creatinine alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), blood urea nitrogen (BUN), and urea were measured in serum. In only CdCl2 administered group, the MDA, creatinine, ALT, AST, ALP, and urea levels in the serum were significantly higher than the control group (p < 0.05). Whereas in all other groups, this values were significantly lower than the only CdCl2 administered group (p < 0.05). Erythrocytes GSH-Px, serum SOD activities of only CdCl2 received group were significantly lower than the control group (p < 0.05). In conclusion, vitamin E + Se, melatonin and vitamin E, and Se, in addition to MLT combinations, had protective effects against high dose cadmium-induced oxidative damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号