首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   7篇
  国内免费   2篇
  2023年   2篇
  2022年   6篇
  2021年   3篇
  2020年   8篇
  2019年   8篇
  2018年   5篇
  2017年   2篇
  2016年   9篇
  2015年   8篇
  2014年   25篇
  2013年   31篇
  2012年   39篇
  2011年   44篇
  2010年   34篇
  2009年   10篇
  2008年   21篇
  2007年   22篇
  2006年   15篇
  2005年   20篇
  2004年   8篇
  2003年   15篇
  2002年   8篇
  2001年   1篇
  2000年   6篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有360条查询结果,搜索用时 15 毫秒
41.
Recruitment of effector T cells to sites of infection or inflammation is essential for an effective adaptive immune response. The chemokine CCL5 (RANTES) activates its cognate receptor, CCR5, to initiate cellular functions, including chemotaxis. In earlier studies, we reported that CCL5-induced CCR5 signaling activates the mTOR/4E-BP1 pathway to directly modulate mRNA translation. Specifically, CCL5-mediated mTOR activation contributes to T cell chemotaxis by initiating the synthesis of chemotaxis-related proteins. Up-regulation of chemotaxis-related proteins may prime T cells for efficient migration. It is now clear that mTOR is also a central regulator of nutrient sensing and glycolysis. Herein we describe a role for CCL5-mediated glucose uptake and ATP accumulation to meet the energy demands of chemotaxis in activated T cells. We provide evidence that CCL5 is able to induce glucose uptake in an mTOR-dependent manner. CCL5 treatment of ex vivo activated human CD3(+) T cells also induced the activation of the nutrient-sensing kinase AMPK and downstream substrates ACC-1, PFKFB-2, and GSK-3β. Using 2-deoxy-d-glucose, an inhibitor of glucose uptake, and compound C, an inhibitor of AMPK, experimental data are presented that demonstrate that CCL5-mediated T cell chemotaxis is dependent on glucose, as these inhibitors inhibit CCL5-mediated chemotaxis in a dose-dependent manner. Altogether, these findings suggest that both glycolysis and AMPK signaling are required for efficient T cell migration in response to CCL5. These studies extend the role of CCL5 mediated CCR5 signaling beyond lymphocyte chemotaxis and demonstrate a role for chemokines in promoting glucose uptake and ATP production to match energy demands of migration.  相似文献   
42.
Prion diseases or transmissible spongiform encephalopathy diseases are typically characterized by deposition of abnormally folded partially protease-resistant host-derived prion protein (PrPres), which is associated with activated glia and increased release of cytokines. This neuroinflammatory response may play a role in transmissible spongiform encephalopathy pathogenesis. We previously reported that brain homogenates from prion-infected mice induced cytokine protein release in primary astroglial and microglial cell cultures. Here we measured cytokine release by cultured glial cells to determine what factors in infected brain contributed to activation of microglia and astroglia. In assays analyzing IL-12p40 and CCL2 (MCP-1), glial cells were not stimulated in vitro by either PrPres purified from infected mouse brains or prion protein amyloid fibrils produced in vitro. However, significant glial stimulation was induced by clarified scrapie brain homogenates lacking PrPres. This stimulation was greatly reduced both by antibody to cyclophilin A (CyPA), a known mediator of inflammation in peripheral tissues, and by cyclosporine A, a CyPA inhibitor. In biochemical studies, purified truncated CyPA fragments stimulated a pattern of cytokine release by microglia and astroglia similar to that induced by scrapie-infected brain homogenates, whereas purified full-length CyPA was a poor stimulator. This requirement for CyPA truncation was not reported in previous studies of stimulation of peripheral macrophages, endothelial cell cardiomyocytes, and vascular smooth muscle cells. Therefore, truncated CyPA detected in brain following prion infection may have an important role in the activation of brain-derived primary astroglia and microglia in prion disease and perhaps other neurodegenerative or neuroinflammatory diseases.  相似文献   
43.
Copy number variations (CNVs) have been shown to contribute substantially to disease susceptibility in several inherited diseases including cancer. We conducted a genome-wide search for CNVs in blood-derived DNA from 79 individuals (62 melanoma patients and 17 spouse controls) of 30 high-risk melanoma-prone families without known segregating mutations using genome-wide comparative genomic hybridization (CGH) tiling arrays. We identified a duplicated region on chromosome 4q13 in germline DNA of all melanoma patients in a melanoma-prone family with three affected siblings. We confirmed the duplication using quantitative PCR and a custom-made CGH array design spanning the 4q13 region. The duplicated region contains 10 genes, most of which encode CXC chemokines. Among them, CXCL1 (melanoma growth-stimulating activity α) and IL8 (interleukin 8) have been shown to stimulate melanoma growth in vitro and in vivo. Our data suggest that the alteration of CXC chemokine genes may confer susceptibility to melanoma.  相似文献   
44.
Khan A 《Journal of Proteomics》2012,75(15):4802-4819
Cytokines, chemokines, growth factors (CCGFs) and other low abundance proteins/peptides in human body fluids or in tissues are potential biomarkers. Human body fluids such as plasma, saliva, urine, etc. are being analyzed more frequently than tissues primarily because of ease of sample collection. However, available information on concentrations of a large number of CCGFs in various body fluids of the same healthy individuals and gender-specific CCGFs is limited. In this work concentrations of 48 CCGFs were measured using multiplex bead assays and compared between plasma, saliva and urine collected from 20 male and female healthy volunteers. Forty three CCGFs were detected at least in one sample type of which 37 were in plasma, 41 were in saliva, and 34 were in urine; five CCGFs were not detected in any sample. Concentrations of detected CCGFs differed significantly between sample types but similar between gender groups. Gender-specific CCGFs were also observed. Concentrations of nine acute phase proteins were also measured from plasma, saliva and urine to determine general health conditions of the volunteers. This work will provide an idea of which CCGFs are detectable and their relative concentrations in healthy human plasma, saliva and urine and which CCGFs are gender-specific.  相似文献   
45.
Chemokines are small proteins, promoting directional migration and activation of different cells through binding to specific receptors. Most chemokines also bind to heparan sulfate (HS), a family of complex and highly sulfated glycosaminoglycan (GAG) found at the cell surface and in the extracellular matrix. This class of molecules has recently emerged as critical regulators of many events involving cell response to the external environment. Binding to HS is thought to be functionally important. Current models suggested that HS ensures the correct positioning of chemokines within tissues and maintains haptotactic gradients of the proteins along cell surfaces, thus providing directional cues for migrating cells. On the chemokine surface, the GAG binding epitopes can be displayed on different areas, some of which overlap the receptor binding domain, while others are clearly separated. We review here some structural aspects of the interaction between GAGs or receptors and chemokines. In particular, we will address the case of CXCL12, a chemokine whose receptor binding site is distinct from the GAG binding site and whose different isoforms display different GAG binding abilities. This chemokine system thus offers an unprecedented opportunity to ascertain the importance of chemokine/GAG interaction in the regulation of cell migration.  相似文献   
46.
In chickens, high levels of dietary zinc cause molting, and the reproductive system undergoes complete remodeling concomitant to feather replacement. In the present study, the expression profiles of cytokines and chemokines were investigated in the ovary and oviduct of control hens and of hens induced to molt by zinc feeding. The zinc-induced feed-intake suppression, the changes in corticosterone levels, the immune cell populations in the reproductive tract, and the apoptosis of reproductive tissues were analyzed. The expression of mRNAs for interleukin-6 (IL-6), interferon-γ (IFN-γ), the avian ortholog of mammalian IL-8 (chCXCLi2), and a chicken MIP-1β-like chemokine (chCCLi2) in the ovary and of mRNAs for IL-1β, IL-6, IFN-γ, transforming growth factor-β2, chCXCLi2, and chCCLi2 in the oviduct were upregulated significantly during zinc-induced molting. A simultaneous feed-intake reduction was observed with higher expression of cytokines and chemokines. The results of the present investigation also suggested that the upregulation of corticosterone was closely associated with the increased expression of cytokines and chemokines. An increase in apoptosis within reproductive tissue during tissue regression was also noted. We had previously observed the upregulation of these cytokines expression in an earlier study (molting by feed withdrawal). However, the pattern and the level of expression were different among these two methods. These findings indicate that cytokines might be a common mediator of tissue regression during molting induced by diverse methods, although the pattern of induction is different. Thus, a high dose of dietary zinc seems to induce reproductive regression via the upregulation of cytokines and chemokines, the suppression of feed intake, and the increase in serum corticosterone, resulting finally in the apoptosis of reproductive tissues.  相似文献   
47.
48.
One of the family of voltage-gated calcium channels (VGCC), the N-type Ca2+ channel, is located predominantly in neurons and is associated with a variety of neuronal responses, including neurodegeneration. A precise mechanism for how the N-type Ca2+ channel plays a role in neurodegenerative disease, however, is unknown. In this study, we immunized N-type Ca2+ channel α1B-deficient (α1B−/−) mice and their wild type (WT) littermates with myelin oligodendrocyte glycoprotein 35–55 and analyzed the progression of experimental autoimmune encephalomyelitis (EAE). The neurological symptoms of EAE in the α1B−/− mice were less severe than in the WT mice. In conjunction with these results, sections of the spinal cord (SC) from α1B−/− mice revealed a reduction in both leukocytic infiltration and demyelination compared with WT mice. No differences were observed in the delayed-type hypersensitivity response, spleen cell proliferation, or cytokine production from splenocytes between the two genotypes. On the other hand, Western blot array analysis and RT-PCR revealed that a typical increase in the expression of MCP-1 in the SC showed a good correlation with the infiltration of leukocytes into the SC. Likewise, immunohistochemical analysis showed that the predominant source of MCP-1 was activated microglia. The cytokine-induced production of MCP-1 in primary cultured microglia from WT mice was significantly higher than that from α1B−/− mice and was significantly inhibited by a selective N-type Ca2+ channel antagonist, ω-conotoxin GVIA or a withdrawal of extracellular Ca2+. These results suggest that the N-type Ca2+ channel is involved in the pathogenesis of EAE at least in part by regulating MCP-1 production by microglia.  相似文献   
49.

Background

Exosomes are nanovesicles actively secreted by potentially all cell types, including tumour cells, with the primary role of extracellular systemic communication mediators, both at autocrine and paracrine levels, at short and long distances. Recently, different studies have used exosomes as a delivery system for a plethora of different molecules, such as drugs, microRNAs and proteins. This has been made possible thanks to the simplicity in exosomes engineering, their great stability and versatility for applications in oncology as well as in regenerative medicine.

Scope of review

The aim of this review is to provide information on the state-of-the-art and possible applications of engineered exosomes, both for cargo and specific cell-targeting, in different pathologies related to the musculoskeletal system.

Major conclusions

The use of exosomes as therapeutic agents is rapidly evolving, different studies explore drug delivery with exosomes using different molecules, showing an enormous potential in various research fields such as oncology and regenerative medicine.

General significance

However, despite the significant progress made by the different studies carried out, currently, the use of exosomes is not a therapeutic reality for the considerable difficulties to overcome.  相似文献   
50.
Objective: To evaluate the association of CXC chemokine ligand 4 (CXCL4) plasma levels with tumour angiogenesis in non-small cell lung cancer (NSCLC) and to assess association of CXCL4 with clinical outcomes.

Patients and methods: Fifty patients with early stage NSCLC who underwent pulmonary resection. CXCL4 levels were analysed by ELISA. Angiogenesis was assessed by immunohistochemistry, and microvessel density (MVD) count.

Results: There was positive correlation between MVD and CXCL4 levels. Patients with higher CXCL4 levels had worse overall and disease-free survival.

Conclusions: Plasma levels of CXCL4 are associated with tumour vascularity. Increased CXCL4 levels in NSCLC patients undergoing treatment may indicate active cancer-induced angiogenesis associated with relapse and worse outcome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号