首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   9篇
  国内免费   3篇
  212篇
  2023年   3篇
  2022年   3篇
  2021年   1篇
  2020年   4篇
  2019年   9篇
  2018年   8篇
  2017年   1篇
  2016年   6篇
  2015年   4篇
  2014年   21篇
  2013年   18篇
  2012年   5篇
  2011年   11篇
  2010年   18篇
  2009年   14篇
  2008年   13篇
  2007年   9篇
  2006年   8篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   7篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1973年   2篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
91.
C-reactive protein (CRP) is elevated in cardiovascular disease and binds to oxidized phosphatidylcholine (oxPtC) in the low-density lipoprotein (LDL) surface. In the present study, we tested if CRP influences the susceptibility of LDL to oxidation. At physiological concentrations of 1-7mug/ml, CRP strongly inhibited copper-mediated oxidation of LDL and phospholipid liposomes in a concentration-dependent manner. Similar concentrations of different monoclonal antibodies or albumin did not influence LDL oxidation. Antioxidant activity of CRP was inhibited by phosphocholine (PC), indicating that the observed activity involves binding of CRP to oxPtC. These results suggest that CRP may limit atherogenic oxidation of LDL in vivo.  相似文献   
92.
Phosphatidylcholine is the principal phospholipid in mammalian tissues, and a major source for the production of arachidonic acid. In this study, the effect of exogenous phosphocholine, a precursor of phosphatidylcholine biosynthesis, on the metabolism of phosphatidylcholine in human umbilical vein endothelial cells was investigated. Incubation of endothelial cells with exogenous phosphocholine at concentrations of 1 to 5 mM was found to inhibit choline uptake and its subsequent incorporation into phosphatidylcholine. Phosphocholine appeared to inhibit choline uptake in a competitive manner. Since phosphatidylcholine is metabolized mainly by the action of phospholipase A2, with the release of arachidonic acid and other fatty acids, the effect of phosphocholine on arachidonic acid release in endothelial cells was also examined. The induction of arachidonic acid release by ATP was enhanced in cells treated with 1 mM phosphocholine. In vitro assays of phospholipase A2 activity in cells incubated with phosphocholine, however, did not produced any significant change in the activity of this enzyme. The results of this study show that phosphocholine modulates the biosynthesis and catabolism of phosphatidylcholine in an indirect manner.  相似文献   
93.
Choline kinase, responsible for the phosphorylation of choline to phosphocholine as the first step of the CDP-choline pathway for the biosynthesis of phosphatidylcholine, has been recognized as a new target for anticancer therapy. Crystal structures of human choline kinase in its apo, ADP and phosphocholine-bound complexes, respectively, reveal the molecular details of the substrate binding sites. ATP binds in a cavity where residues from both the N and C-terminal lobes contribute to form a cleft, while the choline-binding site constitutes a deep hydrophobic groove in the C-terminal domain with a rim composed of negatively charged residues. Upon binding of choline, the enzyme undergoes conformational changes independently affecting the N-terminal domain and the ATP-binding loop. From this structural analysis and comparison with other kinases, and from mutagenesis data on the homologous Caenorhabditis elegans choline kinase, a model of the ternary ADP.phosphocholine complex was built that reveals the molecular basis for the phosphoryl transfer activity of this enzyme.  相似文献   
94.
95.
《遗传学报》2020,47(4):213-223
CTP synthase(CTPS) is an important metabolic enzyme that catalyzes the rate-Iimiting reaction of nucleotide CrP de novo synthesis.Since 2010,a series of studies have demonstrated that CTPS can form filamentous structures in bacteria and eukaryotes,which are termed cytoophidia.However,it is unknown whether cytoophidia exist in the third domain of life,archaea.Using Haloarcula hispanica as a model system,here we demonstrate that CTPS forms distinct intracellular compartments in archaea.Under stimulated emission depletion microscopy,we find that the structures of H.hispanica CTPS are elongated,similar to cytoophidia in bacteria and eukaryotes.When Haloarcula cells are cultured in lowsalt medium,the occurrence of cytoophidia increases dramatically.In addition,treatment of H.hispanica with a glutamine analog or overexpression of CTPS can promote cytoophidium assembly.Our study reveals that CTPS can fo rm cytoophidia in all three domains of life,suggesting that forming cytoophidia is an ancient property of CTPS.  相似文献   
96.
Choline Kinase is a key component of the Kennedy pathway that converts choline into a number of structural and signalling lipids that are essential for cell growth and survival. One member of the family, Choline Kinase-α (ChoKα) is frequently up-regulated in human cancers, and expression of ChoKα is sufficient to transform cells. Consequently ChoKα has been studied as a potential target for therapeutic agents in cancer research. Despite great interest in the enzyme, mechanistic studies have not been reported. In this study, a combination of initial velocity and product inhibition studies, together with the kinetic and structural characterisation of a novel ChoKα inhibitor is used to support a mechanism of action for human ChoKα. Substrate and inhibition kinetics are consistent with an iso double displacement mechanism, in which the γ-phosphate from ATP is transferred to choline in two distinct steps via a phospho-enzyme intermediate. Co-crystal structures, and existing site-specific mutation studies, support an important role for Asp306, in stabilising the phospho-enzyme intermediate. The kinetics also indicate a distinct kinetic (isomerisation) step associated with product release, which may be attributed to a conformational change in the protein to disrupt an interaction between Asp306 and the phosphocholine product, facilitating product release. This study describes a mechanism for ChoKα that is unusual amongst kinases, and highlights the availability of different enzyme states that can be exploited for drug discovery.  相似文献   
97.
We have investigated the structure of the lipopolysaccharide (LPS) of nontypeable Haemophilus influenzae (NTHi) strain 2019, a prototype strain that is used for studies of NTHi biology and disease. Analysis of LPS from wild type and lex2B, lpt3 and pgm mutant strains using NMR techniques and ESI-MS on O-deacylated LPS and core oligosaccharide material (OS), as well as ESI-MSn on permethylated dephosphorylated OS, confirmed the previously established structure in which lactose is linked to the proximal heptose (HepI) of the conserved triheptosyl inner-core moiety, l-α-d-Hepp-(1→2)-[PEtn→6]-l-α-d-Hepp-(1→3)-l-α-d-Hepp-(1→5)-[PPEtn→4]-α-Kdo-(2→6)-lipid A. Importantly, our data provide further structural detail whereby extensions from the middle heptose (HepII) are now characterized as β-d-Galp-(1→4)-β-d-Glcp-(1→4)-α-d-Glcp-(1→3 and truncated versions thereof. PEtn substitutes O-3 of the distal heptose (HepIII) of the inner-core moiety. This PEtn substituent was absent in the lpt3 mutant indicating that Lpt3 is the transferase required to add PEtn to the distal heptose. Interestingly, in the lex2B mutant strain HepIII was found to be substituted at O-2 by β-d-Glcp which, in turn, can be further extended. Contrary to previous findings, LPS of the pgm mutant strain contained minor glycoforms having β-d-Glcp linked to O-4 of HepI and also glycoforms with an additional PEtn which could be assigned to HepIII. Acetate groups and one glycine residue further substitute HepIII in NTHi 2019.  相似文献   
98.
Phosphatidylcholine (PC) homeostasis is important for maintaining cellular growth and survival. Cellular growth and apoptosis may also be influenced by the PC to phosphatidylethanolamine (PE) ratio as a reduction in this ratio can result in a loss of membrane integrity. To investigate whether a reduced PC:PE ratio influences cellular growth and apoptosis, we utilized the MT58 cell line, which contains a thermo-sensitive mutation in CTP:phosphocholine cytidylyltransferase-α, the rate-limiting enzyme for PC biosynthesis. Incubation of MT58 cells at the restrictive temperature of 41 °C results in a reduction of cellular PC and induces apoptosis. Furthermore, MT58 cells have a 50% reduction in the PC:PE ratio when incubated at 41 °C. In an attempt to normalize the PC:PE ratio, which may stabilize cellular membranes and rescue MT58 cells from apoptosis, the cells were treated with either silencing RNA to impair PE biosynthesis or lysophosphatidylcholine to increase PC mass. Impairing PE biosynthesis in MT58 cells reduced cellular PE and PC concentrations by 30% and 20%, but did not normalize the PC:PE ratio. Loss of both phospholipids enhanced the onset of apoptosis in MT58 cells. Lysophosphatidylcholine normalized cellular PC, increased PE mass by 10%, restored cellular growth and prevented apoptosis of MT58 cells without normalizing the PC:PE ratio. Furthermore, total amount of cellular PC and PE, but not the PC:PE ratio, correlated with cellular growth (R2 = 0.76), and inversely with cellular apoptosis (R2 = 0.97). These data suggest the total cellular amount of PC and PE, not the PC:PE ratio, influences growth and membrane integrity of MT58 cells.  相似文献   
99.
We have examined the kinetics of the adsorption of melittin, a secondary amphipathic peptide extracted from bee venom, on lipid membranes using three independent and complementary approaches. We probed (i) the change in the polarity of the 19Trp of the peptide upon binding, (ii) the insertion of this residue in the apolar core of the membrane, measuring the 19Trp-fluorescence quenching by bromine atoms attached on lipid acyl chains, and (iii) the folding of the peptide, by circular dichroism (CD). We report a tight coupling of the insertion of the peptide with its folding as an α-helix. For all the investigated membrane systems (cholesterol-containing, phosphoglycerol-containing, and pure phosphocholine bilayers), the decrease in the polarity of 19Trp was found to be significantly faster than the increase in the helical content of melittin. Therefore, from a kinetics point of view, the formation of the α-helix is a consequence of the insertion of melittin. The rate of melittin folding was found to be influenced by the lipid composition of the bilayer and we propose that this was achieved by the modulation of the kinetics of insertion. The study reports a clear example of the coupling existing between protein penetration and folding, an interconnection that must be considered in the general scheme of membrane protein folding.  相似文献   
100.
《Cell reports》2020,30(6):1848-1861.e5
  1. Download : Download high-res image (124KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号