首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2311篇
  免费   227篇
  国内免费   64篇
  2602篇
  2024年   10篇
  2023年   64篇
  2022年   90篇
  2021年   96篇
  2020年   89篇
  2019年   146篇
  2018年   116篇
  2017年   84篇
  2016年   68篇
  2015年   80篇
  2014年   112篇
  2013年   137篇
  2012年   91篇
  2011年   113篇
  2010年   81篇
  2009年   97篇
  2008年   94篇
  2007年   85篇
  2006年   81篇
  2005年   66篇
  2004年   72篇
  2003年   55篇
  2002年   55篇
  2001年   35篇
  2000年   35篇
  1999年   32篇
  1998年   45篇
  1997年   34篇
  1996年   35篇
  1995年   31篇
  1994年   44篇
  1993年   15篇
  1992年   41篇
  1991年   20篇
  1990年   33篇
  1989年   23篇
  1988年   24篇
  1987年   25篇
  1986年   23篇
  1985年   24篇
  1984年   19篇
  1983年   17篇
  1982年   24篇
  1981年   10篇
  1980年   11篇
  1979年   6篇
  1976年   3篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
排序方式: 共有2602条查询结果,搜索用时 0 毫秒
21.
Cerebrospinal fluid (CSF) was removed at a constant flow rate of 1 microliter/min from the third ventricle of anesthetized rats. Every 15 min, CSF dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) concentrations were determined by direct injection of CSF into a liquid chromatographic system coupled with electrochemical detection. Mean CSF concentrations of DOPAC, HVA, and 5-HIAA were 1.29 microM, 0.88 microM, and 2.00 microM, respectively. In order to determine the turnover rates of dopamine (DA) and serotonin, experiments using monoamine oxidase (MAO) inhibition were performed. Tranylcypromine (20 mg/kg i.p.) induced a sharp exponential decrease of CSF DOPAC, HVA, and 5-HIAA, with respective half-lives of 15.60 min, 16.91 min, and 77.23 min. Their respective turnover rates were 3.74, 2.22, and 1.18 nmol X ml-1 X h-1. m-Hydroxybenzylhydrazine (NSD-1015, 100 mg/kg i.p.) and monofluoromethyl-DOPA (100 mg/kg i.p.), two decarboxylase inhibitors, induced a slow exponential decrease of all three CSF metabolites. alpha-Methyl-p-tyrosine (250 mg/kg i.p.) also induced a slow exponential decrease of DOPAC and HVA. These decreases of CSF DOPAC and HVA induced by DA synthesis inhibitors may reflect the turnover of DA in vivo. Haloperidol (0.5 mg/kg i.p.) considerably enhanced CSF DOPAC and HVA without affecting 5-HIAA, confirming that dopaminergic receptors modulate DA neurotransmission in vivo. Haloperidol administered 1.5 h after NSD-1015 did not increase DOPAC and HVA, in contrast to reserpine (5 mg/kg i.p.) injected under the same conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
22.
Plasma and cerebrospinal fluid (CSF) concentrations of amino acids were measured in 65 healthy volunteers (50 men and 15 women). The CSF levels of the monoamine metabolites homovanillic acid (HVA), 3-methoxy-4-hydroxyphenylethylene glycol (MOPEG), and 5-hydroxyindoleacetic acid (5-HIAA) were also determined. Sex differences were observed in both plasma and CSF amino acid levels as well as in the relationship between these concentrations. No significant correlations were observed between the CSF levels of HVA and 5-HIAA, and the concentrations of their precursor amino acids in either plasma or CSF. The MOPEG level in CSF correlated positively with the plasma concentrations of several amino acids.  相似文献   
23.
A new method for the determination of tryptophan and its metabolites in a single mouse brain using high-performance liquid chromatography (HPLC) with fluorometric detection is described. Tryptophan, serotonin, 5-hydroxyindoleacetic acid, indoleacetic acid, and tryptophol were clearly separated by a C8 reverse-phase column. Tissue preparation is performed only to centrifuge homogenates of brain prior to the injection to HPLC. The sensitivity is in the range from 10 to 15 pg.  相似文献   
24.
Microvessels were isolated from canine cerebral cortex, and the composition of the endothelial cell membrane was investigated. Endothelial cell membranes were separated from the surrounding basement membrane, solubilized, and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis in 12% gels. Staining with Coomassie Blue revealed a characteristic banding pattern of at least 12 major proteins with apparent molecular weights between 14,000 and 250,000. When proteins from red blood cell ghosts were run simultaneously, no similarities were observed, except for proteins at apparent molecular weights of 43,000 (band 3) and 35,000 (band 4). These two proteins migrated exactly to the positions of the erythrocyte proteins actin and glyceraldehyde 3-phosphate dehydrogenase, respectively. Membrane glycoproteins in gels were also examined by the use of fluorescent lectins. Of the fluorescein isothiocyanate-conjugated (FITC) lectins tested, only FITC-concanavalin A had an affinity for any membrane components. Diazotized [125I]iodosulfanilic acid, a membrane-impermeable reagent, was used to label the internal (lumen) cell surface and the external (antilumen) cell surface. Autoradiography and determination of radioactivity levels in gel slices showed that several proteins were specifically labeled, and that major differences in radioactivity of proteins existed in internal and external labeling experiments. It is concluded that the protein composition of the luminal membrane is different from that of the antiluminal membrane.  相似文献   
25.
Elongated, more highly polyunsaturated derivatives of linoleic acid (18:2 omega-6) and linolenic acid (18:3 omega-3) accumulate in brain, but their sites of synthesis and mechanism of entry are not well characterized. To investigate the role of the blood-brain barrier in this process, cultured murine cerebromicrovascular endothelia were incubated with [1-14C]18:2 omega-6 or [1-14C]18:3 omega-3 and their elongation/desaturation products determined. The major metabolite of 18:2 omega-6 was 20:4 omega-6, whereas the primary product from 18:3 omega-3 was 20:5 omega-3. Although these products were found primarily in cell lipids, they were also released from the cells and gradually accumulated in the extracellular fluid. Eicosanoid production was observed from the 20:4 omega-6 and 20:5 omega-3 that were formed. No 22:5 omega-6 or 22:6 omega-3 fatty acids were detected, suggesting that these endothelial cells are not the site of the final desaturation step. Although the uptake of 18:3 omega-3 and 18:2 omega-6 was nearly identical, 18:3 omega-3 was more extensively elongated and desaturated. Competition experiments demonstrated a preference for 18:3 omega-3 by the elongation/desaturation pathway. These findings suggest that the blood-brain barrier can play an important role in the elongation and desaturation of omega-3 and omega-6 essential fatty acids during their transfer from the circulation into the brain.  相似文献   
26.
Tryptophan is the only amino acid in the circulation that is bound by albumin, and previous studies have suggested that the brain tryptophan supply is a function of either the free or the albumin-bound pool of tryptophan in blood. Since the albumin molecule per se does not cross the brain capillary wall, i.e., the blood-brain barrier (BBB), the transport of tryptophan from the circulating albumin-bound pool may involve enhanced dissociation of tryptophan from the albumin binding sites within the cerebral microcirculation. This hypothesis was confirmed in the present studies wherein the dissociation constant (KaD) of albumin binding of tryptophan in the rat or rabbit brain microcirculation was measured in vivo. Brain extraction data for [14C]tryptophan determined with the carotid artery injection technique were fit to the Kety-Renkin-Crone equation modified for protein-bound solute. The KaD of albumin binding in the rat or rabbit brain microcirculation under pentobarbital anesthesia was 1.7 +/- 0.1 and 3.9 +/- 1.0 mM, respectively, as compared to the KD value measured in vitro with equilibrium dialysis, 0.13 +/- 0.03 mM. In contrast, the KaD value of albumin binding of tryptophan in vivo in the rabbit brain microcirculation was reduced by ether anesthesia to a value of 2.1 +/- 0.4 mM. This reduction in the KaD under ether anesthesia was associated with a 2.5-fold increase in cerebral blood flow. In addition, dialyzed rabbit serum caused a statistically significant inhibition in [14C]tryptophan influx during ether, but not pentobarbital, anesthesia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
27.
PERUMALLA, C. J., PETERSON, C. A. & ENSTONE, D. E., 1990. A survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermis. Roots of 181 species from 53 families were surveyed to determine the frequency of Casparian bands in hypodermal layers. For six species, inconclusive data were obtained. The roots of the remaining 175 species were divided into three categories on the basis of this survey. In the first, a hypodermis is absent (12 species): no wall modifications were observed in the outer cortex and this region was permeable to the apoplastic dye Cellufluor. In the second, a hypodermis is present, but a hypodermal Casparian band is absent (seven species). In roots of six species, no wall modifications were detected in the hypodermis; the one remaining species had lignified phi thickenings which were permeable to Cellufluor. In the third, both a hypodermis and a hypodermal Casparian band are present (156 species). These Casparian bands consisted of suberin deposits throughout the width of the anticlinal walls of the hypodermis. The tangential walls of the hypodermis were also suberized, indicating that suberin lamellae were probably also present. Hypodermal Casparian bands were found in roots of hydrophytic, mesophytic and xerophytic species and in members of primitive as well as advanced families. The widespread occurrence of these bands (in 89% of the species surveyed) suggests that they were present in the type ancestral to the flowering plants and that this feature has been retained by many species in this group. The epidermal cell walls of the majority of species examined were suberized but were permeable to Cellufluor.  相似文献   
28.
We studied the hexose transporter protein of the frontal and temporal neocortex, hippocampus, putamen, cerebellum, and cerebral microvessels (which constitute the blood-brain barrier) in Alzheimer disease and control subjects by reversible and covalent binding with [3H]cytochalasin B and by immunological reactivity. In Alzheimer disease subjects, we found a marked decrease in the hexose transporter in brain microvessels and in the cerebral neocortex and hippocampus, regions that are most affected in Alzheimer disease, but there were no abnormalities in the putamen or cerebellum. Hexose transporter reduction in cerebral microvessels of Alzheimer subjects is relatively specific because other enzyme markers of brain endothelium were not significantly altered. The low density of the hexose transporter at the blood-brain barrier and in the cerebral cortex in Alzheimer disease may be related to decreased in vivo measurements of cerebral oxidative metabolism.  相似文献   
29.
In order to explore the pathogenetic mechanism underlying the changes in blood-brain barrier sodium transport in experimental diabetes, the effects of hyperglycemia and of hypoinsulinemia were studied in nondiabetic rats. In untreated diabetes, the neocortical blood-brain barrier permeability for sodium decreased by 20% (5.6 +/- 0.7 versus 7.0 +/- 0.8 X 10(5) ml/g/s) as compared to controls. Intravenous infusion of 50% glucose for 2 h was associated with a decrease in the blood-brain barrier permeability to sodium (5.4 +/- 1.2 X 10(5) ml/g/s), whereas rats treated with an inhibitor of insulin-secretion (SMS 201-995, a somatostatin-analogue) had normal sodium permeability (7.3 +/- 2.0 X 10(5) ml/g/s). Acute insulin treatment of diabetic rats normalized the sodium permeability within a few hours as compared to a separate control group (7.7 +/- 1.1 versus 6.9 +/- 1.4 X 10(5) ml/g/s). To elucidate whether the abnormal blood-brain barrier passage is caused by a metabolic effect of glucose or by the concomitant hyperosmolality, rats were made hyperosmolar by intravenous injection of 50% mannitol. Although not statistically significant, blood-brain barrier sodium permeability increased in hyperosmolar rats as compared to the control rats (8.3 +/- 1.0 and 7.0 +/- 1.9 X 10(5) ml/g/s, respectively). It is concluded that either hyperglycemia per se or a glucose metabolite is responsible for the blood-brain barrier abnormality which occurs in diabetes. Further, we suggest that the specific decrease of sodium permeability could be the result of glucose-mediated inhibition of the Na+K+-ATPase localized at the blood-brain barrier.  相似文献   
30.
近年来的研究表明根瘤皮层内存在着可调节的气体扩散屏障,它是由根瘤皮层内的一层细胞及填充在胞间隙的水层构成的,而根瘤是通过改变填充该层胞间隙的水层厚度来调节对气体扩散的阻力。本文概述了关于模拟豆科根瘤内气体交换和气体扩散的数学模型研究,阐明调节根瘤内含类菌体细胞维持低氧分压的有关问题。模型研究使我们获得了对共生固氮根瘤内极为复杂的微生态环境的初步认识,有待于通过改进试验和借助其他理论进一步探索根瘤气体交换和气体扩散的本质。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号