首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9727篇
  免费   768篇
  国内免费   573篇
  11068篇
  2024年   25篇
  2023年   230篇
  2022年   322篇
  2021年   488篇
  2020年   452篇
  2019年   580篇
  2018年   513篇
  2017年   346篇
  2016年   295篇
  2015年   301篇
  2014年   583篇
  2013年   601篇
  2012年   407篇
  2011年   468篇
  2010年   312篇
  2009年   449篇
  2008年   417篇
  2007年   444篇
  2006年   385篇
  2005年   364篇
  2004年   297篇
  2003年   265篇
  2002年   234篇
  2001年   159篇
  2000年   129篇
  1999年   138篇
  1998年   148篇
  1997年   134篇
  1996年   125篇
  1995年   117篇
  1994年   80篇
  1993年   84篇
  1992年   87篇
  1991年   67篇
  1990年   60篇
  1989年   47篇
  1988年   55篇
  1987年   48篇
  1986年   34篇
  1985年   55篇
  1984年   134篇
  1983年   82篇
  1982年   91篇
  1981年   77篇
  1980年   61篇
  1979年   68篇
  1978年   39篇
  1977年   56篇
  1976年   32篇
  1974年   23篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
961.
CRISPR/Cas9技术的脱靶效应及优化策略   总被引:1,自引:0,他引:1  
  相似文献   
962.
Screening of the commercially available Ph.D.-7 phage-displayed heptapeptide library for peptides that bind immobilized Zn2+ resulted in the repeated selection of the peptide HAIYPRH, although binding assays indicated that HAIYPRH is not a zinc-binding peptide. HAIYPRH has also been selected in several other laboratories using completely different targets, and its ubiquity suggests that it is a target-unrelated peptide. We demonstrated that phage displaying HAIYPRH are enriched after serial amplification of the library without exposure to target. The amplification of phage displaying HAIYPRH was found to be dramatically faster than that of the library itself. DNA sequencing uncovered a mutation in the Shine-Dalgarno (SD) sequence for gIIp, a protein involved in phage replication, imparting to the SD sequence better complementarity to the 16S ribosomal RNA (rRNA). Introducing this mutation into phage lacking a displayed peptide resulted in accelerated propagation, whereas phage displaying HAIYPRH with a wild-type SD sequence were found to amplify normally. The SD mutation may alter gIIp expression and, consequently, the rate of propagation of phage. In the Ph.D.-7 library, the mutation is coincident with the displayed peptide HAIYPRH, accounting for the target-unrelated selection of this peptide in multiple reported panning experiments.  相似文献   
963.
964.
Previous studies with Arabidopsis accessions revealed that biomass correlates negatively to dusk starch content and total protein, and positively to the maximum activities of enzymes in photosynthesis. We hypothesized that large accessions have lower ribosome abundance and lower rates of protein synthesis, and that this is compensated by lower rates of protein degradation. This would increase growth efficiency and allow more investment in photosynthetic machinery. We analysed ribosome abundance and polysome loading in 19 accessions, modelled the rates of protein synthesis and compared them with the observed rate of growth. Large accessions contained less ribosomes than small accessions, due mainly to cytosolic ribosome abundance falling at night in large accessions. The modelled rates of protein synthesis resembled those required for growth in large accessions, but were up to 30% in excess in small accessions. We then employed 13CO2 pulse‐chase labelling to measure the rates of protein synthesis and degradation in 13 accessions. Small accessions had a slightly higher rate of protein synthesis and much higher rates of protein degradation than large accessions. Protein turnover was negligible in large accessions but equivalent to up to 30% of synthesised protein day?1 in small accessions. We discuss to what extent the decrease in growth in small accessions can be quantitatively explained by known costs of protein turnover and what factors may lead to the altered diurnal dynamics and increase of ribosome abundance in small accessions, and propose that there is a trade‐off between protein turnover and maximisation of growth rate.  相似文献   
965.
The multiple roles of light-harvesting chlorophyll a/b-protein complexes in the structure and function of Arabidopsis chloroplasts were investigated using two chlorophyll b-less mutants grown under metal halide lamps with a significant far-red component. In ch1-3, all six light-harvesting proteins of photosystem (PS) II were greatly decreased; in ch1-3lhcb5, Lhcb5 was completely absent while the other five proteins were further decreased. The thylakoids of ch1-3 were less negatively-charged than the wild type, and those of ch1-3lhcb5 were even less so. Despite the expected weaker electrostatic repulsion, however, thylakoids in leaves of the mutants were not well stacked, an effect we attribute to lower van der Waals attraction, lower electrostatic attraction between opposite charges, and the absence or instability of PSII supercomplexes and peripheral light-harvesting trimers. The quantum yield of oxygen evolution in leaves decreased from 0.109 (wild type) to 0.087 (ch1-3) and 0.081 (ch1-3lhcb5) O2 (photon absorbed)− 1; we attribute this decrease to an excessive spillover from PSII to PSI, a limited PSII antenna, and increased light-independent thermal dissipation in PSII in the mutants. Destabilization of the donor side of PSII, indicated by slower electron donation to the redox-active tyrosine YZ in ch1-3, probably enhanced PSII susceptibility to photoinactivation, increased the non-functional PSII complexes in vivo, and further inactivated PSII complexes in vitro. The evolution of chlorophyll b-containing chloroplasts seems to fine-tune oxygenic photosynthesis.  相似文献   
966.
Like most intracellular pathogens, Toxoplasma synthesizes and secretes an arsenal of proteins to successfully invade its host cell and hijack host functions for intracellular survival. The rhoptries are key secretory organelles that inject proteins into the host cell where they are positioned to co-opt host processes, although little is known regarding how these proteins exert their functions. We show here that the rhoptry protein ROP13 is synthesized as a pre-pro-protein that is processed in the parasite. Processing occurs at a conserved SφXE cleavage site as mutagenesis of glutamic acid to alanine at the P1 position disrupts ROP13 maturation. We also demonstrate that processing of the prodomain is not necessary for rhoptry targeting and secretion. While gene disruption reveals that ROP13 is not essential for growth in fibroblasts in vitro or for virulence in vivo, we find that ROP13 is a soluble effector protein that can access the cytoplasm of host cells. Exogenously expressed ROP13 in human cells remains cytosolic but also appears toxic, suggesting that over-expression of this effector protein is disrupting some function within the host cell.  相似文献   
967.
Ida Namslauer  Robert B. Gennis 《BBA》2010,1797(5):550-556
In this work we have investigated the effect of a pathogenic mitochondrial DNA mutation found in human colon cells, at a functional-molecular level. The mutation results in the amino-acid substitution Tyr19His in subunit I of the human CytcO and it is associated with respiratory deficiency. It was introduced into Rhodobacter sphaeroides, which carries a cytochrome c oxidase (cytochrome aa3) that serves as a model of the mitochondrial counterpart. The residue is situated in the middle of a pathway that is used to transfer substrate protons as well as protons that are pumped across the membrane. The Tyr33His (equivalent residue in the bacterial CytcO) structural variant of the enzyme was purified and its function was investigated. The results show that in the structurally altered CytcO the activity decreased due to slowed proton transfer; proton transfer from an internal proton donor, the highly-conserved Glu286, to the catalytic site was slowed by a factor of ∼ 5, while reprotonation of the Glu from solution was slowed by a factor of ∼ 40. In addition, in the structural variant proton pumping was completely impaired. These results are explained in terms of introduction of a barrier for proton transfer through the D pathway and changes in the coordination of water molecules surrounding the Glu286 residue. The study offers an explanation, at the molecular level, to the link between a specific amino-acid substitution and a pathogenic phenotype identified in human colon cells.  相似文献   
968.
969.
We present a method with which osmotic properties of the cytoplasm of cyanobacterial cells and the osmotic permeability of plasma membranes to water and solutes can be assessed from measurements of chlorophyll a fluorescence. When the electron transport of photosystem II is inhibited, the quantum yield of chlorophyll a fluorescence in cyanobacterial cells varied between a low yield limit that was attained after acclimation to darkness (state 2) and a high yield limit that was attained after acclimation to light (state 1). It was shown recently that the difference between chlorophyll a fluorescence of light‐acclimated and of dark‐acclimated cells relates quantitatively to the internal osmolality of cyanobacteria (G. C. Papageorgiou and A. Alygizaki‐Zorba. 1997. Biochim. Biophys. Acta 1335: 1‐4). In the present work we employed rapid mixing of Synechococcus sp. PCC7942 (strain PAMCOD) suspensions with solutions of defined osmolality in order to measure cell osmolality and turgor threshold, as well as water and solute fluxes across cell membranes. Concentration upshocks with sorbitol, glycine betaine, Na+ and K+ salts caused rapid (t1/2 < 10 ms) depression of fluorescence that was correlated to osmotic water outflow from the cells. The fluorescence remained depressed in all cases except for NaCl. With NaCl, the depression was transient and fluorescence recovered with an apparent time constant of 200 ms. The fluorescence rise correlates to inflows of NaCl and water.  相似文献   
970.
The E3 ligases HOIL‐1 and parkin are each comprised of an N‐terminal ubiquitin‐like (Ubl) domain followed by a zinc‐binding region and C‐terminal RING–In‐between‐RING–RING domains. These two proteins, involved in the ubiquitin‐mediated degradation pathway, are the only two known E3 ligases to share this type of multidomain architecture. Further, the Ubl domain of both HOIL‐1 and parkin has been shown to interact with the S5a subunit of the 26S proteasome. The solution structure of the HOIL‐1 Ubl domain was solved using NMR spectroscopy to compare it with that of parkin to determine the structural elements responsible for S5a intermolecular interactions. The final ensemble of 20 structures had a β‐grasp Ubl‐fold with an overall backbone RMSD of 0.59 ± 0.10 Å in the structured regions between I55 and L131. HOIL‐1 had a unique extension of both β1 and β2 sheets compared to parkin and other Ubl domains, a result of a four‐residue insertion in this region. A similar 15‐residue hydrophobic core in the HOIL‐1 Ubl domain resulted in a comparable stability to the parkin Ubl, but significantly lower than that observed for ubiquitin. A comparison with parkin and other Ubl domains indicates that HOIL‐1 likely uses a conserved hydrophobic patch (W58, V102, Y127, Y129) found on the β1 face, the β3–β4 loop and β5, as well as a C‐terminal basic residue (R134) to recruit the S5a subunit as part of the ubiquitin‐mediated proteolysis pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号