首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   331篇
  免费   30篇
  国内免费   1篇
  2024年   1篇
  2023年   5篇
  2022年   3篇
  2021年   9篇
  2020年   12篇
  2019年   19篇
  2018年   14篇
  2017年   11篇
  2016年   12篇
  2015年   43篇
  2014年   53篇
  2013年   64篇
  2012年   34篇
  2011年   35篇
  2010年   8篇
  2009年   6篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2005年   7篇
  2004年   3篇
  2003年   1篇
  2002年   5篇
  1998年   1篇
排序方式: 共有362条查询结果,搜索用时 31 毫秒
71.

Background

Alpha-1 antitrypsin is the main inhibitor of neutrophil elastase in the lung. Although it is principally synthesized by hepatocytes, alpha-1 antitrypsin is also secreted by bronchial epithelial cells. Gene mutations can lead to alpha-1 antitrypsin deficiency, with the Z variant being the most clinically relevant due to its propensity to polymerize. The ability of bronchial epithelial cells to produce Z-variant protein and its polymers is unknown.We investigated the expression, accumulation, and secretion of Z-alpha-1 antitrypsin and its polymers in cultures of transfected cells and in cells originating from alpha-1 antitrypsin-deficient patients.

Methods

Experiments using a conformation-specific antibody were carried out on M- and Z-variant–transfected 16HBE cells and on bronchial biopsies and ex vivo bronchial epithelial cells from Z and M homozygous patients. In addition, the effect of an inflammatory stimulus on Z-variant polymer formation, elicited by Oncostatin M, was investigated. Comparisons of groups were performed using t-test or ANOVA. Non-normally distributed data were assessed by Mann–Whitney U test or the Kruskal-Wallis test, where appropriate. A P value of < 0.05 was considered to be significant.

Results

Alpha-1 antitrypsin polymers were found at a higher concentration in the culture medium of ex vivo bronchial epithelial cells from Z-variant homozygotes, compared with M-variant homozygotes (P < 0.01), and detected in the bronchial epithelial cells and submucosa of patient biopsies. Oncostatin M significantly increased the expression of alpha-1 antitrypsin mRNA and protein (P < 0.05), and the presence of Z-variant polymers in ex vivo cells (P < 0.01).

Conclusions

Polymers of Z-alpha-1 antitrypsin form in bronchial epithelial cells, suggesting that these cells may be involved in the pathogenesis of lung emphysema and in bronchial epithelial cell dysfunction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0112-3) contains supplementary material, which is available to authorized users.  相似文献   
72.

Background

Symptomatic relief is an important treatment goal for patients with COPD. To date, no diary for evaluating respiratory symptoms in clinical trials has been developed and scientifically-validated according to FDA and EMA guidelines. The EXACT – Respiratory Symptoms (E-RS) scale is a patient-reported outcome (PRO) measure designed to address this need. The E-RS utilizes 11 respiratory symptom items from the existing and validated 14-item EXACT, which measures symptoms of exacerbation. The E-RS total score quantifies respiratory symptom severity, and 3 domains assess breathlessness, cough and sputum, and chest symptoms.

Methods

This study examined the performance of the E-RS in each of 3 controlled trials with common and unique validation variables: one 6-month (N = 235, US) and two 3-month (N = 749; N = 597; international). Subjects completed the E-RS as part of a daily eDiary. Tests of reliability, validity, and responsiveness were conducted in each dataset.

Results

In each study, RS-Total score was internally consistent (Cronbach α) (0.88, 0.92, 0.92) and reproducible (intra-class correlation) in stable patients (2 days apart: 0.91; 7 days apart: 0.71, 0.74). RS-Total scores correlated significantly with the following criterion variables (Spearman’s rho; p < 0.01, all comparisons listed here): FEV1% predicted (−0.19, −0.14, −0.15); St. George’s Respiratory Questionnaire (SGRQ) (0.65, 0.52, 0.51); Breathlessness, Cough, and Sputum Scale (BCSS) (0.89, 0.89); modified Medical Research Council dyspnoea scale (mMRC) (0.40); rescue medication use (0.43, 0.42); Functional Performance Inventory Short-Form (FPI-SF) (0.43); 6-minute walk distance (6-MWT) (−0.30, −0.14) and incremental shuttle walk (ISWT) (−0.18) tests. Correlations between these variables and RS-Breathlessness, RS-Cough and Sputum, RS-Chest Symptoms scores supported subscale validity. RS-Total, RS-Breathlessness, and RS-Chest Symptoms differentiated mMRC levels of breathlessness severity (p < 0.0001). RS-Total and domain scores differentiated subjects with no rescue medication use and 3 or more puffs (p < 0.0001). Sensitivity to changes in health status (SGRQ), symptoms (BCSS), and exercise capacity (6MWT, ISWT) were also shown and responder definitions using criterion- and distribution-based methods are proposed.

Conclusions

Results suggest the E-RS is a reliable, valid, and responsive measure of respiratory symptoms of COPD suitable for use in natural history studies and clinical trials.

Trial registration

MPEX: NCT00739648; AZ1: NCT00949975; AZ 2: NCT01023516

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0124-z) contains supplementary material, which is available to authorized users.  相似文献   
73.

Background

Cigarette smoking is the most important risk factor for Chronic Obstructive Pulmonary Disease (COPD). Only a subgroup of smokers develops COPD and it is unclear why these individuals are more susceptible to the detrimental effects of cigarette smoking. The risk to develop COPD is known to be higher in individuals with familial aggregation of COPD. This study aimed to investigate if acute systemic and local immune responses to cigarette smoke differentiate between individuals susceptible or non-susceptible to develop COPD, both at young (18-40 years) and old (40-75 years) age.

Methods

All participants smoked three cigarettes in one hour. Changes in inflammatory markers in peripheral blood (at 0 and 3 hours) and in bronchial biopsies (at 0 and 24 hours) were investigated. Acute effects of smoking were analyzed within and between susceptible and non-susceptible individuals, and by multiple regression analysis.

Results

Young susceptible individuals showed significantly higher increases in the expression of FcγRII (CD32) in its active forms (A17 and A27) on neutrophils after smoking (p = 0.016 and 0.028 respectively), independently of age, smoking status and expression of the respective markers at baseline. Smoking had no significant effect on mediators in blood or inflammatory cell counts in bronchial biopsies. In the old group, acute effects of smoking were comparable between healthy controls and COPD patients.

Conclusions

We show for the first time that COPD susceptibility at young age associates with an increased systemic innate immune response to cigarette smoking. This suggests a role of systemic inflammation in the early induction phase of COPD.

Trial registration

Clinicaltrials.gov: NCT00807469

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0121-2) contains supplementary material, which is available to authorized users.  相似文献   
74.

Background

Cigarette smoke (CS) is the major etiologic factor of chronic obstructive pulmonary disease (COPD). CS-exposed mice develop emphysema and mild pulmonary inflammation but no airway obstruction, which is also a prominent feature of COPD. Therefore, CS may interact with other factors, particularly respiratory infections, in the pathogenesis of airway remodeling in COPD.

Methods

C57BL/6 mice were exposed to CS for 2 h a day, 5 days a week for 8 weeks. Mice were also exposed to heat-killed non-typeable H. influenzae (HK-NTHi) on days 7 and 21. One day after the last exposure to CS, mice were sacrificed and lung inflammation and mechanics, emphysematous changes, and goblet cell metaplasia were assessed. Mice exposed to CS or HK-NTHi alone or room air served as controls. To determine the susceptibility to viral infections, we also challenged these mice with rhinovirus (RV).

Results

Unlike mice exposed to CS or HK-NTHi alone, animals exposed to CS/HK-NTHi developed emphysema, lung inflammation and goblet cell metaplasia in both large and small airways. CS/HK-NTHi-exposed mice also expressed increased levels of mucin genes and cytokines compared to mice in other groups. CS/HK-NTHi-exposed mice infected with RV demonstrated increased viral persistence, sustained neutrophilia, and further increments in mucin gene and chemokine expression compared to other groups.

Conclusions

These findings indicate that in addition to CS, bacteria may also contribute to development of COPD, particularly changes in airways. Mice exposed to CS/HK-NTHi are also more susceptible to subsequent viral infection than mice exposed to either CS or HK-NTHi alone.  相似文献   
75.

Rationale

Plasma soluble Receptor for Advanced Glycation End Product (sRAGE) is considered as a biomarker in COPD. The contribution of endogenous sRAGE (esRAGE) to the pool of plasma sRAGE and the implication of both markers in COPD pathogenesis is however not clear yet. The aim of the current study was therefore to measure plasma levels of esRAGE comparative to total sRAGE in patients with COPD and a control group. Further, we established the relations of esRAGE and total sRAGE with disease specific characteristics such as lung function and DLCO, and with different circulating AGEs.

Methods

Plasma levels of esRAGE and sRAGE were measured in an 88 patients with COPD and in 55 healthy controls. FEV1 (%predicted) and FEV1/VC (%) were measured in both groups; DLCO (%predicted) was measured in patients only. In this study population we previously reported that the AGE Nϵ-(carboxymethyl) lysine (CML) was decreased, Nϵ-(carboxyethyl) lysine (CEL) increased and pentosidine was not different in plasma of COPD patients compared to controls.

Results

Plasma esRAGE (COPD: 533.9 ± 412.4, Controls: 848.7 ± 690.3 pg/ml; p = 0.000) was decreased in COPD compared to controls. No significant correlations were observed between plasma esRAGE levels and lung function parameters or plasma AGEs. A positive correlation was present between esRAGE and total sRAGE levels in the circulation. Confirming previous findings, total sRAGE (COPD: 512.6 ± 403.8, Controls: 1834 ± 804.2 pg/ml; p < 0.001) was lower in patients compared to controls and was positively correlated FEV1 (r = 0.235, p = 0.032), FEV1/VC (r = 0.218, p = 0.047), and DLCO (r = 0.308, p = 0.006). sRAGE furthermore did show a significant positive association with CML (r = 0.321, p = 0.003).

Conclusion

Although plasma esRAGE is decreased in COPD patients compared to controls, only total sRAGE showed a significant and independent association with FEV1, FEV1/VC and DLCO, indicating that total sRAGE but not esRAGE may serve as marker of COPD disease state and severity.  相似文献   
76.

Background

The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that primarily resides in airway epithelial cells. Decreased CFTR expression and/or function lead to impaired airway surface liquid (ASL) volume homeostasis, resulting in accumulation of mucus, reduced clearance of bacteria, and chronic infection and inflammation.

Methods

Expression of CFTR and the cigarette smoke metal content were assessed in lung samples of controls and COPD patients with established GOLD stage 4. CFTR protein and mRNA were quantified by immunohistochemistry and quantitative RT-PCR, respectively. Metals present in lung samples were quantified by ICP-AES. The effect of cigarette smoke on down-regulation of CFTR expression and function was assessed using primary human airway epithelial cells. The role of leading metal(s) found in lung samples of GOLD 4 COPD patients involved in the alteration of CFTR was confirmed by exposing human bronchial epithelial cells 16HBE14o- to metal-depleted cigarette smoke extracts.

Results

We found that CFTR expression is reduced in the lungs of GOLD 4 COPD patients, especially in bronchial epithelial cells. Assessment of metals present in lung samples revealed that cadmium and manganese were significantly higher in GOLD 4 COPD patients when compared to control smokers (GOLD 0). Primary human airway epithelial cells exposed to cigarette smoke resulted in decreased expression of CFTR protein and reduced airway surface liquid height. 16HBE14o-cells exposed to cigarette smoke also exhibited reduced levels of CFTR protein and mRNA. Removal and/or addition of metals to cigarette smoke extracts before exposure established their role in decrease of CFTR in airway epithelial cells.

Conclusions

CFTR expression is reduced in the lungs of patients with severe COPD. This effect is associated with the accumulation of cadmium and manganese suggesting a role for these metals in the pathogenesis of COPD.  相似文献   
77.
78.

Background

Combining two long-acting bronchodilators with complementary mechanisms of action may provide treatment benefits to patients with chronic obstructive pulmonary disease (COPD) that are greater than those derived from either treatment alone. The efficacy and safety of a fixed-dose combination (FDC) of aclidinium bromide, a long-acting muscarinic antagonist, and formoterol fumarate, a long-acting β2-agonist, in patients with moderate to severe COPD are presented.

Methods

In this 24-week double-blind study, 1692 patients with stable COPD were equally randomized to twice-daily treatment with FDC aclidinium 400 μg/formoterol 12 μg (ACL400/FOR12 FDC), FDC aclidinium 400 μg/formoterol 6 μg (ACL400/FOR6 FDC), aclidinium 400 μg, formoterol 12 μg, or placebo administered by a multidose dry powder inhaler (Genuair®/Pressair®)*. Coprimary endpoints were change from baseline to week 24 in 1-hour morning postdose FEV1 (FDCs versus aclidinium) and change from baseline to week 24 in morning predose (trough) FEV1 (FDCs versus formoterol). Secondary endpoints were change from baseline in St. George’s Respiratory Questionnaire (SGRQ) total score and improvement in Transition Dyspnea Index (TDI) focal score at week 24. Safety and tolerability were also assessed.

Results

At study end, improvements from baseline in 1-hour postdose FEV1 were significantly greater in patients treated with ACL400/FOR12 FDC or ACL400/FOR6 FDC compared with aclidinium (108 mL and 87 mL, respectively; p < 0.0001). Improvements in trough FEV1 were significantly greater in patients treated with ACL400/FOR12 FDC versus formoterol (45 mL; p = 0.0102), a numerical improvement of 26 mL in trough FEV1 over formoterol was observed with ACL400/FOR6 FDC. Significant improvements in both SGRQ total and TDI focal scores were observed in the ACL400/FOR12 FDC group at study end (p < 0.0001), with differences over placebo exceeding the minimal clinically important difference of ≥4 points and ≥1 unit, respectively. All treatments were well tolerated, with safety profiles of the FDCs similar to those of the monotherapies.

Conclusions

Treatment with twice-daily aclidinium 400 μg/formoterol 12 μg FDC provided rapid and sustained bronchodilation that was greater than either monotherapy; clinically significant improvements in dyspnea and health status were evident compared with placebo. Aclidinium/formoterol FDC may be an effective and well tolerated new treatment option for patients with COPD.

Trial registration

Clinicaltrials.gov NCT01437397.*Registered trademarks of Almirall S.A., Barcelona, Spain; for use within the US as Pressair® and Genuair® within all other licensed territories.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0123-0) contains supplementary material, which is available to authorized users.  相似文献   
79.
80.
Persistent inflammation within the respiratory tract underlies the pathogenesis of numerous chronic pulmonary diseases including chronic obstructive pulmonary disease, asthma and pulmonary fibrosis. Chronic inflammation in the lung may arise from a combination of genetic susceptibility and environmental influences, including exposure to microbes, particles from the atmosphere, irritants, pollutants, allergens, and toxic molecules. To this end, an immediate, strong, and highly regulated inflammatory defense mechanism is needed for the successful maintenance of homeostasis within the respiratory system. Macroautophagy/autophagy plays an essential role in the inflammatory response of the lung to infection and stress. At baseline, autophagy may be critical for inhibiting spontaneous pulmonary inflammation and fundamental for the response of pulmonary leukocytes to infection; however, when not regulated, persistent or inefficient autophagy may be detrimental to lung epithelial cells, promoting lung injury. This perspective will discuss the role of autophagy in driving and regulating inflammatory responses of the lung in chronic lung diseases with a focus on potential avenues for therapeutic targeting.

Abbreviations AR allergic rhinitis

AM alveolar macrophage

ATG autophagy-related

CF cystic fibrosis

CFTR cystic fibrosis transmembrane conductance regulator

COPD chronic obstructive pulmonary disease

CS cigarette smoke

CSE cigarette smoke extract

DC dendritic cell

IH intermittent hypoxia

IPF idiopathic pulmonary fibrosis

ILD interstitial lung disease

MAP1LC3B microtubule associated protein 1 light chain 3 beta

MTB Mycobacterium tuberculosis

MTOR mechanistic target of rapamycin kinase

NET neutrophil extracellular traps

OSA obstructive sleep apnea

PAH pulmonary arterial hypertension

PH pulmonary hypertension

ROS reactive oxygen species

TGFB1 transforming growth factor beta 1

TNF tumor necrosis factor

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号