首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1928篇
  免费   154篇
  国内免费   121篇
  2023年   33篇
  2022年   56篇
  2021年   66篇
  2020年   67篇
  2019年   100篇
  2018年   82篇
  2017年   47篇
  2016年   60篇
  2015年   58篇
  2014年   112篇
  2013年   139篇
  2012年   101篇
  2011年   114篇
  2010年   78篇
  2009年   102篇
  2008年   88篇
  2007年   94篇
  2006年   82篇
  2005年   83篇
  2004年   84篇
  2003年   74篇
  2002年   76篇
  2001年   30篇
  2000年   57篇
  1999年   40篇
  1998年   28篇
  1997年   23篇
  1996年   21篇
  1995年   18篇
  1994年   12篇
  1993年   6篇
  1992年   9篇
  1991年   5篇
  1990年   8篇
  1989年   9篇
  1988年   5篇
  1987年   5篇
  1985年   12篇
  1984年   9篇
  1983年   4篇
  1982年   11篇
  1981年   13篇
  1980年   8篇
  1979年   10篇
  1978年   10篇
  1977年   12篇
  1976年   8篇
  1975年   14篇
  1974年   4篇
  1973年   5篇
排序方式: 共有2203条查询结果,搜索用时 296 毫秒
91.
Background/Aims: Fibroblast growth factor 21 (FGF21) plays a protective role in ischemia/reperfusion induced cardiac injury. However, the exact molecular mechanism of FGF21 action remains unclear. This study was designed the protective effect of FGF21 on the heart and its mechanism. Method: Adenovirus vector expressing FGF21 or control β-galactosidase was injected into the myocardium of mice. Myocardial injury was observed by tissue staining and immunohistochemical staining. The expression level of caspases-3 and galectin-3 in myocardial cells were observed by immunoblotting. Then, hypoxia-induced cell model was established. Small interfering RNA (SiRNA) and plasmid were transfected into H9c2 using Lipofectamine 2000 reagent (Invitrogen). The expression levels of galectin-3, ECM and cystatin-3 in cells were observed by immunoblotting, and the relationship between fibroblast growth factor 21 and galectin-3 was analyzed. Result: Cell test in vitro showed that FGF21 could inhibit apoptosis and decrease the expression of ECM (ColIaI, fibronectin, and alpha-SMA) under hypoxia. Western blot data showed that hypoxia-induced cell damage increased galectin-3 levels, while FGF21 decreased galactose lectin-3 levels. In addition, inhibition of galactose agglutinin-3 expression by siRNA enhanced the cardioprotective effect of FGF21, while overexpression of galectin-3 reduced the cardioprotective effect of fibroblast growth factor 21. Conclusion: FGF21 may be a novel therapy for hypoxia-induced cardiac injury by regulating the expression of galectin-3.  相似文献   
92.
93.
Breast cancer ranks as the most frequently diagnosed cancer among women worldwide. Elevated cytoplasmic p21 levels are often found in breast cancer tissues and related to a poor prognosis. However, the underlying mechanisms that lead to the stabilization of cytoplasmic p21 protein, which normally has a very short half-life, remain obscure. In this study, we found that there was a strong correlation between p21 and USP11 in the cytoplasm of breast cancer tissues and cells. Furthermore, we revealed that ERK1/2 phosphorylated USP11 at the Ser905 site, which promoted the cytoplasmic localization of USP11. In the cytoplasm, USP11 colocalized and interacted with p21. As a result, USP11 catalyzed the removal of polyubiquitin chains bound to cytoplasmic p21 and resulted in its stabilization. Functionally, USP11-mediated stabilization of cytoplasmic p21 induced breast cancer cell proliferation in vitro and in vivo. Our findings provide the first evidence that ubiquitinated p21 in the cytoplasm can be recycled through USP11-mediated deubiquitination, and we identified the USP11-p21 axis in the cytoplasm as a potential therapeutic target for breast cancer control.  相似文献   
94.
Circulating endothelial progenitor cells (EPCs), which function in vascular repair, are the markers of endothelial dysfunction and vascular health. Fibroblast growth factor 21 (FGF21), a liver‐secreted protein, plays a crucial role in glucose homeostasis and lipid metabolism. FGF21 has been reported to attenuate the progression of atherosclerosis, but its impact on EPCs under high oxidative stress conditions remains unclear. In vitro studies showed that the β‐klotho protein was expressed in cultured EPCs and that its expression was upregulated by FGF21 treatment. Hydrogen peroxide (H2O2)‐induced oxidative stress impaired EPC function, including cell viability, migration and tube formation. Pretreatment with FGF21 restored the functions of EPCs after the exposure to H2O2. Administration of N(ω)‐nitro‐L‐arginine methyl ester (L‐NAME), an inhibitor of nitric oxide synthase, inhibited the effects of FGF21 in alleviating oxidative injury by suppressing endothelial nitric oxide synthase (eNOS). In an in vivo study, the administration of FGF21 significantly reduced total cholesterol (TC) and blood glucose levels in apolipoprotein E (ApoE)‐deficient mice that were fed a high‐fat diet (HFD). Endothelial function, as reflected by acetylcholine‐stimulated aortic relaxation, was improved after FGF21 treatment in ApoE‐deficient mice. Analysis of mRNA levels in the aorta indicated that FGF21 increased the mRNA expression of eNOS and upregulated the expression of the antioxidant genes superoxide dismutase (SOD)1 and SOD2 in ApoE‐deficient mice. These data suggest that FGF21 improves EPC functions via the Akt/eNOS/nitric oxide (NO) pathway and reverses endothelial dysfunction under oxidative stress. Therefore, administration of FGF21 may ameliorate a HFD‐induced vascular injury in ApoE‐deficient mice.  相似文献   
95.
96.
PCR-analysis, multilocus enzyme electrophoresis and molecular karyotyping were used to characterize 52 strains belonging to the genus Galactomyces. The resultant data revealed that a PCR method employing the universal primer N21 and microsatellite primer (CAC)5 is appropriate for the distinction of four Ga. geotrichum sibling species, Ga. citri-aurantii and Ga. reessii. Better separation was achieved with the UP primer N21; each species displayed a specific pattern with very low intraspecific variation. We propose to use the primer N21 for the differentiation of the six taxa composing the genus Galactomyces. Multilocus enzyme electrophoresis revealed genetic homogeneity of each sibling species within the Ga. geotrichum complex. On the other hand, the four sibling species, having from 41 to 59% of nDNA homology and similar phenotypic characteristics, are clearly distinguished based on their electrophoretic profiles using two enzymes: mannose-6-phosphate isomerase (MPI) and phosphoglucomutase (PGM). Despite the same number of chromosomal bands, different karyotype patterns were found in Ga. geotrichum sensu stricto and its two sibling species A and B. Within each sibling species, chromosome length polymorphism was observed, in particular for small bands, allowing discrimination to the strain level.  相似文献   
97.
Cell-free systems derived from unfertilized Xenopus eggs have been particularly informative in the study of the regulation and biochemistry of DNA replication. We have developed a Xenopus-based system to analyze proliferating cell nuclear antigen (PCNA)-specific effects on the functional properties of egg extracts. To do this, we have coupled peptides derived from p21 (Waf1/Cip1) to beads and used these to deplete PCNA from Xenopus egg extracts. The effect on various aspects of DNA replication can be analyzed after the readdition of PCNA and other purified proteins. Using this system, we have shown that replication of single-stranded M13 DNA is entirely dependent upon PCNA. By adding exogenous T7 DNA polymerase to PCNA-depleted extracts, we have uncoupled processive DNA replication from PCNA activity and so created an experimental system to analyze the dependence of postreplicative processes on PCNA function. We have shown that successful chromatin assembly is specifically dependent on PCNA. However, systems for analyzing the far more complex mechanisms required for the replication of nuclear double-stranded DNA have proved so far to be refractory to specific PCNA depletion.  相似文献   
98.
During the cell cycle of the yeast Saccharomyces cerevisiae, the actin cytoskeleton and cell surface growth are polarized, mediating bud emergence, bud growth, and cytokinesis. We have determined whether p21-activated kinase (PAK)-family kinases regulate cell and actin polarization at one or several points during the yeast cell cycle. Inactivation of the PAK homologues Ste20 and Cla4 at various points in the cell cycle resulted in loss of cell and actin cytoskeletal polarity, but not in depolymerization of F-actin. Loss of PAK function in G1 depolarized the cortical actin cytoskeleton and blocked bud emergence, but allowed isotropic growth and led to defects in septin assembly, indicating that PAKs are effectors of the Rho-guanosine triphosphatase Cdc42. PAK inactivation in S/G2 resulted in depolarized growth of the mother and bud and a loss of actin polarity. Loss of PAK function in mitosis caused a defect in cytokinesis and a failure to polarize the cortical actin cytoskeleton to the mother-bud neck. Cla4-green fluorescent protein localized to sites where the cortical actin cytoskeleton and cell surface growth are polarized, independently of an intact actin cytoskeleton. Thus, PAK family kinases are primary regulators of cell and actin cytoskeletal polarity throughout most or all of the yeast cell cycle. PAK-family kinases in higher organisms may have similar functions.  相似文献   
99.
We have previously found that a peptide corresponding to residues 35–47 of the ras-p21 protein, from its switch 1 effector domain region, strongly inhibits oocyte maturation induced by oncogenic p21, but not by insulin-activated cellular wild-type p21. Another ras–p21 peptide corresponding to residues 96–110 that blocks ras–jun and jun kinase (JNK) interactions exhibits a similar pattern of inhibition. We have also found that c-raf strongly induces oocyte maturation and that dominant negative c-raf strongly blocks oncogenic p21-induced oocyte maturation. We now find that the p21 35–47, but not the 96–110, peptide completely blocks c-raf-induced maturation. This finding suggests that the 35–47 peptide blocks oncogenic ras at the level of raf; that activated normal and oncogenic ras–p21 have differing requirements for raf-dependent signaling; and that the two oncogenic-ras-selective inhibitory peptides, 35–47 and 96–110, act at two different critical downstream sites, the former at raf, the latter at JNK/jun, both of which are required for oncogenic ras-p21 signaling.  相似文献   
100.
Interactions of protein kinase CK2 subunits   总被引:3,自引:0,他引:3  
Several approaches have been used to study the interactions of the subunits of protein kinase CK2. The inactive mutant of CK2 that has Asp 156 mutated to Ala (CK2A156) is able to bind the CK2 subunit and to compete effectively in this binding with wild-type subunits and . The interaction between CK2A156 and CK2 was also demonstrated by transfection of epitope-tagged cDNA constructs into COS-7 cells. Immunoprecipitation of epitope-tagged CK2A156 coprecipitated the subunit and vice-versa. The assay of the CK2 activity of the extracts obtained from cells transiently transfected with these different subunits yielded some surprising results: The CK2 specific phosphorylating activity of these cells transfected with the inactive CK2A156 was considerably higher than the control cells transfected with vectors alone. Assays of the immunoprecipitated CK2A156 expressed in these cells, however, demonstrated that the mutant was indeed inactive. It can be concluded that transfection of the inactive CK2A156 affects the endogenous activity of CK2. Transfection experiments with CK2 and subunits and CK2A156 were also used to confirm the interaction of CK2 with the general CDK inhibitor p21WAF1/CIP1 co-transfected into these cells. Finally a search in the SwissProt databank for proteins with properties similar to those derived from the amino acid composition of CK2 indicated that CK2 is related to protein phosphatase 2A and to other phosphatases as well as to a subunit of some ion-transport ATPases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号