首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   612篇
  免费   23篇
  国内免费   50篇
  685篇
  2023年   7篇
  2022年   5篇
  2021年   13篇
  2020年   15篇
  2019年   9篇
  2018年   14篇
  2017年   7篇
  2016年   19篇
  2015年   21篇
  2014年   52篇
  2013年   43篇
  2012年   39篇
  2011年   44篇
  2010年   22篇
  2009年   36篇
  2008年   41篇
  2007年   33篇
  2006年   33篇
  2005年   33篇
  2004年   26篇
  2003年   25篇
  2002年   18篇
  2001年   7篇
  2000年   9篇
  1999年   12篇
  1998年   9篇
  1997年   10篇
  1996年   12篇
  1995年   6篇
  1994年   10篇
  1993年   2篇
  1992年   8篇
  1991年   3篇
  1990年   7篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有685条查询结果,搜索用时 15 毫秒
91.
92.
Rice Hoja Blanca Tenuivirus (RHBV), a negative strand RNA virus, has been identified to infect rice and is widely transmitted by the insect vector. NS3 protein encoded by RHBV RNA3 was reported to be a potent RNAi suppressor to counterdefense RNA silencing in plants, insect cells, and mammalian cells. Here, we report the crystal structure of the N-terminal domain of RHBV NS3 (residues 21–114) at 2.0 Å. RHBV NS3 N-terminal domain forms a dimer by two pairs of α-helices in an anti-parallel mode, with one surface harboring a shallow groove at the dimension of 20 Å × 30 Å for putative dsRNA binding. In vitro RNA binding assay and RNA silencing suppression assay have demonstrated that the structural conserved residues located along this shallow groove, such as Arg50, His51, Lys77, and His85, participate in dsRNA binding and RNA silencing suppression. Our results provide the initial structural implications in understanding the RNAi suppression mechanism by RHBV NS3.  相似文献   
93.
CTL with optimal effector function play critical roles in mediating protection against various intracellular infections and cancer. However, individuals may exhibit suppressive immune microenvironment and, in contrast to activating CTL, their autologous antigen presenting cells may tend to tolerize or anergize antigen specific CTL. As a result, although still in the experimental phase, CTL-based adoptive immunotherapy has evolved to become a promising treatment for various diseases such as cancer and virus infections. In initial experiments ex vivo expanded CMV (cytomegalovirus) specific CTL have been used for treatment of CMV infection in immunocompromised allogeneic bone marrow transplant patients. While it is common to have life-threatening CMV viremia in these patients, none of the patients receiving expanded CTL develop CMV related illness, implying the anti-CMV immunity is established by the adoptively transferred CTL1. Promising results have also been observed for melanoma and may be extended to other types of cancer2. While there are many ways to ex vivo stimulate and expand human CTL, current approaches are restricted by the cost and technical limitations. For example, the current gold standard is based on the use of autologous DC. This requires each patient to donate a significant number of leukocytes and is also very expensive and laborious. Moreover, detailed in vitro characterization of DC expanded CTL has revealed that these have only suboptimal effector function 3. Here we present a highly efficient aAPC based system for ex vivo expansion of human CMV specific CTL for adoptive immunotherapy (Figure 1). The aAPC were made by coupling cell sized magnetic beads with human HLA-A2-Ig dimer and anti-CD28mAb4. Once aAPC are made, they can be loaded with various peptides of interest, and remain functional for months. In this report, aAPC were loaded with a dominant peptide from CMV, pp65 (NLVPMVATV). After culturing purified human CD8+ CTL from a healthy donor with aAPC for one week, CMV specific CTL can be increased dramatically in specificity up to 98% (Figure 2) and amplified more than 10,000 fold. If more CMV-specific CTL are required, further expansion can be easily achieved by repetitive stimulation with aAPC. Phenotypic and functional characterization shows these expanded cells have an effector-memory phenotype and make significant amounts of both TNFα and IFNγ (Figure 3).  相似文献   
94.
95.
A vector for preparation of mouse polyomavirus capsid-like particles for transfer of foreign peptides or proteins into cells was constructed. Model pseudocapsids carrying EGFP fused with the C-terminal part of the VP3 minor protein (EGFP-VLPs) have been prepared and analysed for their ability to be internalised and processed by mouse cells and to activate mouse and human dendritic cells (DC) in vitro. EGFP-VLPs entered mouse epithelial cells, fibroblasts and human and mouse DC efficiently and were processed by both, lysosomes and proteasomes. Surprisingly, they did not induce upregulation of DC co-stimulation molecules or maturation markers in vitro; however, they did induce interleukin 12 secretion.  相似文献   
96.
Double-stranded (ds)RNA is made as a by-product of viral replication. Synthetic dsRNA induces virtually all of the same systemic symptoms as acute viral infections, such as fever and malaise. In order to develop a model of respiratory viral infections (such as influenza) suitable for use in gene knockout mice (where the deleted gene may affect viral replication), we examined C57BL/6 mouse body temperature and locomotor activity responses to the synthetic dsRNA polyriboinosinic.polyribocytidylic acid (poly[rI.rC]) introduced via the intratracheal (IT) route. We compared the IT poly[rI.rC] responses to the well-characterized intraperitoneal (IP) poly[rI.rC] responses. IT poly[rI.rC] failed to induce an acute phase response (APR) in mice, in contrast to IP poly[rI.rC]. However, addition of interferon (IFN)gamma to the IT poly[rI.rC] inoculum induced sustained hypothermia and suppressed locomotor activity responses with similar kinetics to those responses seen in acute mouse influenza. We further examined cytokine, antiviral, muscarinic M2 receptor and inducible nitric oxide synthase gene expression at 5 hr in the lungs of IT challenged mice. These studies suggested that priming the lung with IFNgamma could enhance proinflammatory (IL1beta, IL6, TNFalpha) cytokine gene expression and suppress interferon gene expression compared to IT poly[rI.rC] alone. No differences were detected for the other genes examined. While further molecular characterization of the model is required, we demonstrate that IT challenge with combined poly[rI.rC] and IFNgamma closely simulates the APR to an acute respiratory virus, and may serve as a suitable model for analyzing the molecular basis of the viral APR in gene knockout mice.  相似文献   
97.
98.
A BacMam baculovirus was designed in our laboratory to express the reporter protein secreted alkaline phosphatase (SEAP) driven by the immediate early promoter of human cytomegalovirus promoter (CMV). In vitro tests have been carried out using this recombinant baculovirus to study the secreted protein in two cell lines and under various culture conditions. The transductions were carried out on two commonly used mammalian cell lines namely the human embryonic kidney (HEK 293A) and Chinese hamster ovary (CHO-K1). Initial studies clearly demonstrated that the transient expression of SEAP was at least 10-fold higher in the HEK 293 cells than the CHO cells under equivalent experimental conditions. Factorial design experiments were done to study the effect of different parameters such as cell density, MOI, and the histone deacetylase inhibitor, trichostatin A concentration. The multiplicity of infection (MOI) and the cell density were found to have the most impact on the process. The enhancer trichostatin A also showed some positive effect. The production of secreted protein in a batch reactor was studied using the Wave disposable bioreactor system. A semi-continuous perfusion process was developed to extend the period of gene expression in mammalian cells using a hollow fiber bioreactor system (HFBR). The growth of cells and viability in both systems was monitored by offline analyses of metabolites. The expression of recombinant protein could be maintained over an extended period of time up to 30 days in the HFBR.  相似文献   
99.
100.
Helicoverpa armigera (the cotton bollworm) is a significant agricultural pest endemic to Afro-Eurasia and Oceania. Gene suppression via RNA interference (RNAi) presents a potential avenue for management of the pest, which is highly resistant to traditional insecticide sprays. This article reviews current understanding on the fate of ingested double-stranded RNA in H. armigera. Existing in vivo studies on diet-delivered RNAi and their effects are summarized and followed by a discussion on the factors and hurdles affecting the efficacy of diet-delivered RNAi in H. armigera.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号