首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2840篇
  免费   147篇
  国内免费   129篇
  2023年   67篇
  2022年   68篇
  2021年   92篇
  2020年   57篇
  2019年   86篇
  2018年   71篇
  2017年   63篇
  2016年   43篇
  2015年   72篇
  2014年   95篇
  2013年   138篇
  2012年   109篇
  2011年   101篇
  2010年   88篇
  2009年   118篇
  2008年   142篇
  2007年   139篇
  2006年   129篇
  2005年   95篇
  2004年   121篇
  2003年   102篇
  2002年   93篇
  2001年   71篇
  2000年   74篇
  1999年   71篇
  1998年   62篇
  1997年   54篇
  1996年   59篇
  1995年   60篇
  1994年   52篇
  1993年   45篇
  1992年   40篇
  1991年   48篇
  1990年   44篇
  1989年   50篇
  1988年   34篇
  1987年   23篇
  1986年   28篇
  1985年   24篇
  1984年   25篇
  1982年   23篇
  1981年   22篇
  1980年   14篇
  1979年   16篇
  1978年   19篇
  1977年   15篇
  1976年   9篇
  1975年   8篇
  1973年   8篇
  1971年   8篇
排序方式: 共有3116条查询结果,搜索用时 15 毫秒
241.
FGF1 is involved in multiple biological functions and exhibits the importance in neuroprotective effects. Our previous studies indicated that, in human brain and retina, the FGF1B promoter controlled the expression of FGF1. However, the exact function and regulation of FGF1 in brain is still unclear. Here, we generated F1B‐GFP transgenic mice that expressed the GFP reporter gene under the control of human FGF1B promoter (?540 to +31). Using the fresh brain sections of F1B‐GFP transgenic mice, we found that the F1B‐GFP cells expressed strong fluorescent signals in the ventricular system throughout the brain. The results of immunohistochemistry further showed that two distinct populations of F1B‐GFP+ cells existed in the brains of F1B‐GFP transgenic mice. We demonstrated that one population of F1B‐GFP+ cells was ependymal cells, which distributed along the entire ventricles, and the second population of F1B‐GFP+ cells was neuronal cells that projected their long processes into multiple directions in specific areas of the brain. The double labeling of F1B‐GFP+ cells and tyrosine hydroxylase indicated that a subpopulation of F1B‐GFP+‐neuronal cells was dopaminergic neurons. Importantly, these F1B‐GFP+/TH+ cells were distributed in the main dopaminergic neuronal groups including hypothalamus, ventral tegmental area, and raphe nuclei. These results suggested that human FGF1B promoter was active in ependymal cells, neurons, and a portion of dopaminergic neurons. Thus, the F1B‐GFP transgenic mice provide an animal model not only for studying FGF1 gene expression in vivo but also for understanding the role of FGF1 contribution in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 232–248, 2015  相似文献   
242.
Clearance of infected and apoptotic neuronal corpses during inflammatory conditions is a fundamental process to create a favorable environment for neuronal recovery. Microglia are the resident immune cells and the predominant phagocytic cells of the CNS, showing a multitude of cellular responses upon activation. Here, we investigated in functional assays how the CO generating enzyme heme oxygenase 1 (HO‐1) influences BV‐2 microglial migration, clearance of debris, and neurite outgrowth of human NT2 neurons. Stimulation of HO‐1 activity attenuated microglial migration in a scratch wound assay, and phagocytosis in a cell culture model of acute inflammation comprising lipopolysaccharide (LPS)‐activated microglia and apoptosis‐induced neurons. Application of a CO donor prevented the production of NO during LPS stimulation, and reduced microglial migration and engulfment of neuronal debris. LPS‐activated microglia inhibited neurite elongation of human neurons without requiring direct cell–cell surface contact. The inhibition of neurite outgrowth was totally reversed by application of exogenous CO or increased internal CO production through supply of the substrate hemin to HO. Our results point towards a vital cytoprotective role of HO‐1/CO signaling after microglial activation. In addition, they support a therapeutic potential of CO releasing chemical agents in the treatment of excessive inflammatory conditions in the CNS. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 854–876, 2015  相似文献   
243.
Therapeutic and mechanistic studies of the presynaptically targeted clostridial neurotoxins (CNTs) have been limited by the need for a scalable, cell-based model that produces functioning synapses and undergoes physiological responses to intoxication. Here we describe a simple and robust method to efficiently differentiate murine embryonic stem cells (ESCs) into defined lineages of synaptically active, networked neurons. Following an 8 day differentiation protocol, mouse embryonic stem cell-derived neurons (ESNs) rapidly express and compartmentalize neurotypic proteins, form neuronal morphologies and develop intrinsic electrical responses. By 18 days after differentiation (DIV 18), ESNs exhibit active glutamatergic and γ-aminobutyric acid (GABA)ergic synapses and emergent network behaviors characterized by an excitatory:inhibitory balance. To determine whether intoxication with CNTs functionally antagonizes synaptic neurotransmission, thereby replicating the in vivo pathophysiology that is responsible for clinical manifestations of botulism or tetanus, whole-cell patch clamp electrophysiology was used to quantify spontaneous miniature excitatory post-synaptic currents (mEPSCs) in ESNs exposed to tetanus neurotoxin (TeNT) or botulinum neurotoxin (BoNT) serotypes /A-/G. In all cases, ESNs exhibited near-complete loss of synaptic activity within 20 hr. Intoxicated neurons remained viable, as demonstrated by unchanged resting membrane potentials and intrinsic electrical responses. To further characterize the sensitivity of this approach, dose-dependent effects of intoxication on synaptic activity were measured 20 hr after addition of BoNT/A. Intoxication with 0.005 pM BoNT/A resulted in a significant decrement in mEPSCs, with a median inhibitory concentration (IC50) of 0.013 pM. Comparisons of median doses indicate that functional measurements of synaptic inhibition are faster, more specific and more sensitive than SNARE cleavage assays or the mouse lethality assay. These data validate the use of synaptically coupled, stem cell-derived neurons for the highly specific and sensitive detection of CNTs.  相似文献   
244.
A global metabolic profiling methodology based on gas chromatography coupled to time-of-flight mass spectrometry (GC-TOFMS) for human plasma was applied to a human exercise study focused on the effects of beverages containing glucose, galactose, or fructose taken after exercise and throughout a recovery period of 6 h and 45 min. One group of 10 well trained male cyclists performed 3 experimental sessions on separate days (randomized, single center). After performing a standardized depletion protocol on a bicycle, subjects consumed one of three different beverages: maltodextrin (MD)+glucose (2:1 ratio), MD+galactose (2:1), and MD+fructose (2:1), consumed at an average of ~1.25 g of carbohydrate (CHO) ingested per minute. Blood was taken straight after exercise and every 45 min within the recovery phase. With the resulting blood plasma, insulin, free fatty acid (FFA) profile, glucose, and GC-TOFMS global metabolic profiling measurements were performed. The resulting profiling data was able to match the results obtained from the other clinical measurements with the addition of being able to follow many different metabolites throughout the recovery period. The data quality was assessed, with all the labelled internal standards yielding values of <15% CV for all samples (n=335), apart from the labelled sucrose which gave a value of 15.19%. Differences between recovery treatments including the appearance of galactonic acid from the galactose based beverage were also highlighted.  相似文献   
245.
Rett syndrome is a neurodevelopmental disorder caused by Mecp2 gene mutations. In RTT patients and Mecp2-null (Mecp2−/Y) mice, norepinephrine (NE) content drops significantly, which may play a role in breathing arrhythmia, sleep disorders and sudden death. However, the underlying mechanisms for the NE defect are not fully understood. The NE defect may result from decreased NE biosynthesis, loss of catecholaminergic neurons or both. Although deficiency in tyrosine hydroxylase (TH) has been demonstrated, it is possible that dopamine β-hydroxylase (DBH), the critical enzyme converting dopamine to NE, is also affected. To test these possibilities, we studied DBH expressions in pontine catecholaminergic neurons of Mecp2−/Y mice identified with breathing abnormalities. In comparison to the wild type, Mecp2−/Y mice at 2 months of age showed ∼50% decrease in the expressions of DBH and TH, at both protein and mRNA levels in the locus coeruleus (LC) region. Consistently, DBH and TH immunoreactivity was markedly decreased in LC neurons of Mecp2−/Y mice. No evidence was found for selective deficiency in TH- or DBH-containing neurons in Mecp2−/Y mice, as almost all TH-positive cells expressed DBH. By counting TH-immunoreactive cells in the LC, we found that the Mecp2−/Y mice lost only ∼5% of the catecholaminergic neurons as compared to wild-type, although their LC volume shrank by ∼15%. These results strongly suggest that the NE defect in Mecp2−/Y mice is likely to result from deficient expression of not only TH but also DBH without significant loss of catecholaminergic neurons in the LC.  相似文献   
246.
Piscidin 1 (Pis-1) is a novel cytotoxic peptide with a cationic α-helical structure isolated from the mast cells of hybrid striped bass. In our previous study, we showed that Pis-1[PG] with a substitution of Pro8 for Gly8 in Pis-1 had higher bacterial cell selectivity than Pis-1. We designed peptoid residue-substituted peptide, Pis-1[NkG], in which Gly8 of Pis-1 was replaced with Nlys (Lys peptoid residue). Pis-1[NkG] had higher antibacterial activity and lower cytotoxicity against mammalian cells than Pis-1 and Pis-1[PG]. We determined the tertiary structure of Pis-1[PG] and Pis-1[NkG] in the presence of DPC micelles by NMR spectroscopy. Both peptides had a three-turn helix in the C-terminal region and a bent structure in the center. Pis-1[PG] has a rigid bent structure at Pro8 whereas Pis-1[NkG] existed as a dynamic equilibrium of two conformers with a flexible hinge structure at Nlys8. Depolarization of the membrane potential of Staphylococcus aureus and confocal laser-scanning microscopy study revealed that Pis-1[NkG] effectively penetrated the bacterial cell membrane and accumulated in the cytoplasm, whereas Pis-1[PG] did not penetrate the membrane but remained outside or on the cell surface. Introduction of a lysine peptoid at position 8 of Pis-1 provided conformational flexibility and increased the positive charge at the hinge region; both factors facilitated penetration of the bacterial cell membrane and conferred bacterial cell selectivity on Pis-1[NkG].  相似文献   
247.
Parkinson’s disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (−)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1 μM (64.0 ± 3.1%) than both (−)-epicatechin (46.0 ± 4.1%, p < 0.05) and (+)-catechin (13.1 ± 3.0%, p < 0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids.  相似文献   
248.
为探究恒频-调频蝙蝠下丘神经元恢复周期特点及其对声脉冲跟随率的影响,实验采用模拟的大蹄蝠(Hipposideros armiger)自然状态下的恒频-调频发声信号为声刺激,在5只听力正常的大蹄蝠上记录了下丘神经元的声反应和恢复周期(n = 93).结果发现,根据神经元恢复率达50%时的双声刺激间隔(inter pulse interval,IPI),可将其分为长时恢复型(long recovery,LR;47.4%)、中等时间恢复型(moderate recovery,MR;35.1%)和短时恢复型(short recovery,SR;17.5%).每种类型依据其恢复率随IPI增加而呈现的不同变化又可进一步分为单IPI反应区神经元,多IPI反应区神经元,以及单调IPI反应神经元.LR,MR和SR型神经元恢复率达50%时的平均IPI分别为(64.0 ± 24.8),(19.6 ± 5.8)和(7.1 ± 2.4) ms (P < 0.001),相对应的平均理论每秒声脉冲数分别为(18.2 ± 7.0),(55.4 ± 15.7)和(171.3 ± 102.9) Hz (P < 0.001).结果提示,单IPI和多IPI反应区神经元具有特殊IPI反应特性,能对蝙蝠捕食和巡航期间所处的时相做出准确判断,而单调IPI反应神经元对IPI变化的敏感性较强,但时相判断性较差.另外LR,MR和SR型神经元恢复周期和理论脉冲跟随率的平均结果均能与这种蝙蝠回声定位期间3个时相的发声行为相匹配,且神经元恢复周期参与决定声脉冲跟随率,满足了蝙蝠巡航、捕食的行为学需要.  相似文献   
249.
电磁场对健康影响的研究包括流行病调查、人体与动物、细胞、生化与分子生物、生物物理等5个层次,电磁生物效应最初是通过物理作用产生化学反应,继而产生后续生物反应.自由基、电磁能量和生物钙是分属于化学、物理学和生物学的3个概念,研究它们之间的关系对于认识电磁生物效应的原初作用具有意义.选择海马神经元,观察在0.1mT、0.5mT和1.0mT电磁场暴露48h,海马神经元ROS水平和胞内Ca2+浓度的变化.实验结果表明:暴露于0.1mT,0.5mT和1.0mT电磁场海马神经元的ROS水平和Ca2+浓度都比对照组有显著性提高(P<0.01).暴露于0.1mT和0.5mT电磁场的ROS水平和暴露于0.1mT电磁场的Ca2+浓度与自由基清除剂+电磁场(Trolox+EMF)组比较没有差异(P>0.05),暴露于1.0mT电磁场的ROS水平和暴露于0.5mT和1.0mT电磁场的Ca2+浓度比Trolox+EMF组有显著性提高(P<0.01).表明电磁场可以促进细胞自由基的产生,并且ROS水平与胞内Ca2+浓度有正相关性.  相似文献   
250.
In neurons of the rat dorsal root ganglia (DRG), using a patch-clamp technique in the whole-cell configuration, we studied the characteristics of calcium channels activated by depletion of the ryanodine-sensitive calcium stores of the endoplasmic reticulum. Current-voltage (I-V) relationships of these store-operated calcium channels were obtained by subtraction of the integral I-V characteristics after application of caffeine from the integral I-V characteristics of calcium channels in the control. Currents through store-operated calcium channels could be induced by application of a series of hyperpolarization current pulses to the cell under conditions of replacement of a calcium-free solution containing caffeine by a caffeine-free solution containing 2 mM Ca2+. In this case, the following two main conditions were abserved: Voltage-operated calcium channels were inactivated, while a gradient of the electrochemical potential for calcium ions was increased, which made easier passing of these currents through store-operated calcium channels. Therefore, we found that in DRG neurons, despite the presence of great numbers of both voltage-operated and receptor-dependent calcium channels, one more mechanism underlying the entry of calcium through store-operated channels does exist. Neirofiziologiya/Neurophysiology, Vol. 39, No. 3, pp. 195–200, May–June, 2007.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号