首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2840篇
  免费   147篇
  国内免费   129篇
  2023年   67篇
  2022年   68篇
  2021年   92篇
  2020年   57篇
  2019年   86篇
  2018年   71篇
  2017年   63篇
  2016年   43篇
  2015年   72篇
  2014年   95篇
  2013年   138篇
  2012年   109篇
  2011年   101篇
  2010年   88篇
  2009年   118篇
  2008年   142篇
  2007年   139篇
  2006年   129篇
  2005年   95篇
  2004年   121篇
  2003年   102篇
  2002年   93篇
  2001年   71篇
  2000年   74篇
  1999年   71篇
  1998年   62篇
  1997年   54篇
  1996年   59篇
  1995年   60篇
  1994年   52篇
  1993年   45篇
  1992年   40篇
  1991年   48篇
  1990年   44篇
  1989年   50篇
  1988年   34篇
  1987年   23篇
  1986年   28篇
  1985年   24篇
  1984年   25篇
  1982年   23篇
  1981年   22篇
  1980年   14篇
  1979年   16篇
  1978年   19篇
  1977年   15篇
  1976年   9篇
  1975年   8篇
  1973年   8篇
  1971年   8篇
排序方式: 共有3116条查询结果,搜索用时 62 毫秒
221.
222.
Transection of the medial forebrain bundle caused apoptosis of dopamine neurons in the rat substantia nigra. Immunohistochemical localization of activated microglia and tyrosine hydroxylase in the axotomized substantia nigra showed that activation of microglia was rapid and OX-6 (MHC-II marker)-positive and ED1 (lysosomal phagocytic marker)-positive microglia were apposed to structurally intact tyrosine hydroxylase-positive dopamine neurons, indicating microglial phagocytosis of degenerating dopamine neurons. The occurrence of microglial phagocytosis at early stages of apoptosis may indicate the evolution of apoptosis into an irreversible state. Alternatively, interventions that suppress early activation of microglia might lead to novel mechanisms for neuron protection.  相似文献   
223.
224.
Korenyuk  I. I. 《Neurophysiology》2000,32(6):376-382
In acute experiments on cats, we studied the impulse activity of 262 neurons of the parietal associative zone (PAZ, field 5). Among them, 129 cells [100 silent units and 29 units generating background activity (BA)] were identified as output neurons, while 133 cells with the BA were interneurons of the intrinsic cortical neuronal circuits. Electrical stimulation of the primary visual, auditory, or somatosensory cortices evoked no impulse responses in silent output PAZ neurons, while output neurons with the BA and interneurons (more than 65 and 80% of the cell units, respectively) generated clear responses (more frequently, phasic). Stimulation of the auditory and visual cortices exerted mostly inhibitory effects, while stimulation of the somatosensory cortex provided mostly excitatory influences. The ratios of neurons generating primary excitatory and inhibitory responses to stimulation of the visual, auditory, and somatic cortices were 0.3:1, 0.6:1, and 3.2:1, respectively. More than 95% of the field-5 neurons were influenced from the primary sensory zones via di- and/or polysynaptic pathways. Monosynaptic excitatory inputs from the visual cortex were identified for 3.8% of interneurons and 6.9% of output PAZ neurons; for the auditory cortical inputs, the respective figures were 1.7 and 3.5%. Monosynaptic connections with the somatic cortex were found only for 4% of the interneurons under study. It has been concluded that interaction of heteromodal signals coming to the PAZ via the corticopetal and associative inputs occurs on neurons of all the cortical layers.  相似文献   
225.
Critical Temporal Modulation of Neuronal Programmed Cell Injury   总被引:1,自引:0,他引:1  
1. As a free radical, nitric oxide (NO) may be toxic to neurons through mechanisms that directly involve DNA damage. Lubeluzole, a novel benzothiazole compound, has recently been demonstrated to be neuroprotective through the signal transduction pathways of NO. We therefore examined whether neuroprotection by lubeluzole was dependent upon the molecular pathways of programmed cell death (PCD).2. In primary hippocampal neurons, evidence of PCD was determined by hematoxylin and eosin (H&E) stain, transmission electron microscopy, and annexin-V binding. NO administration with the NO generators sodium nitroprusside (300 M) or SIN-1 (300 M) directly induced PCD.3. Neurons positive for PCD increased from 22 ± 3% (untreated) to 72 ± 3% (NO) over a 24-hr period. Coadministration of NO and lubeluzole (750 nM), a neuroprotective concentration, actively decreased PCD expression on H&E stain from 72 ± 3% (NO only) to 25 ± 3% (NO and lubeluzole). Significant reduction in DNA fragmentation by lubeluzole also was evident on electron microscopy. Application of lubeluzole in concentrations that were not neuroprotective or administration of the biologically inactive R-isomer did not significantly alter NO-induced PCD, suggesting that neuroprotection by lubeluzole was intimately linked to the modulation of PCD. Lubeluzole also was able to prevent the initial stages of cellular membrane inversion labeled with annexin-V binding, an early and sensitive indicator of PCD. Interestingly, the critical period for lubeluzole to reverse PCD induction appeared to be within the first 4 hr following NO exposure.4. Further investigation into the neuroprotective pathways that alter PCD may provide greater insight into the molecular mechanisms that ultimately determine neuronal injury.  相似文献   
226.
Much uncertainty still exists regarding higher level phylogenetic relationships in the insect order Diptera, and the need for independent analyses is apparent. In this paper, I present a parsimony analysis that is based on details of the nervous system of flies. Because neural characters have received little attention in modern phylogenetic analyses and the stability of neural traits has been debated, special emphasis is given to testing the robustness of the analysis itself and to evaluating how neurobiological constraints (such as levels of neural processing) influence the phylogenetic information content. The phylogenetic study is based on 14 species in three nematoceran and nine brachyceran families. All characters used in the analysis are based on anatomical details of the neural organization of the fly visual system. For the most part they relate to uniquely identifiable neurons, which are cells or cell types that can be confidently recognized as homologues among different species and thus compared. Parsimony analysis results in a phylogenetic hypothesis that favors specific previously suggested phylogenetic relationships and suggests alternatives regarding other placements. For example, several heterodactylan families (Bombyliidae, Asilidae, and Dolichopodidae) are supported in their placement as suggested by Sinclair et al. (1993), but Tipulidae and Syrphidae are placed differently. Tipulidae are placed at a derived rather than ancestral position within the Nematocera, and Syrphidae are placed within the Schizophora. The analysis suggests that neural characters generally maintain phylogenetic information well. However, by "forcing" neural characters onto conventional phylogenetic analyses it becomes apparent that not all neural centers maintain such information equally well. For example, neurons of the second-order visual neuropil, the medulla, contain stronger phylogenetic "signal" than do characters of the deeper visual center, the lobula plate. These differences may relate to different functional constraints in the two neuropils.  相似文献   
227.
Neuronal loss is a salient feature of prion diseases. However, its cause and mechanism, particularly its relationship with the accumulation and precipitation of the pathogenic, protease-resistant isoform PrP(Sc) of the cellular prion protein PrP(C), are still an enigma. Several studies suggest that neuronal loss could occur through a process of programmed cell death, which is consistent with the lack of inflammation in these conditions. By analogy with the pathological events occurring during the development of Alzheimer's disease, controversies still exist regarding the relationship between amyloidogenesis, prion aggregation, and neuronal loss. We recently demonstrated that a prion protein fragment (118-135) displayed membrane-destabilizing properties and was able to induce, in a nonfibrillar form, the fusion of unilamellar liposomes. To unravel the mechanism of prion protein neurotoxicity, we characterize the effects of the human Pr[118-135] peptide on rat cortical neurons. We demonstrate that low concentrations of the Pr[118-135] peptide, in a nonfibrillar form, induce a time- and dose- dependent apoptotic cell death, including caspase activation, DNA condensation, and fragmentation. This toxicity might involve oxidative stress, because antioxidant molecules, such as probucol and propyl gallate, protect neurons against prion peptide toxicity. By contrast, a nonfusogenic variant Pr[118-135, 0 degrees ] peptide, which displays the same amino acid composition but several amino acid permutations, is not toxic to cortical neurons, which emphasizes the critical role of the fusogenic properties of the prion peptide in its neurotoxicity. Taken together, our results suggest that the interaction between the Pr[118-135] peptide and the plasma membrane of neurons might represent an early event in a cascade leading to neurodegeneration.  相似文献   
228.
Ethanol, added to primary cultures of cerebellar granule neurons simultaneously with NMDA, was previously shown to inhibit the anti-apoptotic effect of NMDA. The in vitro anti-apoptotic effect of NMDA is believed to mimic in vivo protection against apoptosis afforded by innervation of developing cerebellar granule neurons by glutamatergic mossy fibers. Therefore, the results suggested that the presence of ethanol in the brain at a critical period of development would promote apoptosis. In the present studies, we examined the effect of chronic ethanol exposure on the anti-apoptotic action of NMDA in cerebellar granule neurons. The neurons were treated with ethanol in vitro for 1-3 days in the absence of NMDA. Even after ethanol was removed from the culture medium, as ascertained by gas chromatography, the protective effect of added NMDA was significantly attenuated. The decreased anti-apoptotic effect of NMDA was associated with a change in the properties of the NMDA receptor, as indicated by a decrease in ligand binding, decreased expression of NMDA receptor subunit proteins, and decreased functional responses including stimulation of increases in intracellular Ca(2+) and induction of brain-derived neurotrophic factor expression. The latter effect may directly underlie the attenuated protective effect of NMDA in these neurons. The results suggest that ethanol exposure during development can have long-lasting effects on neuronal survival. The change in the NMDA receptor caused by chronic ethanol treatment may contribute to the loss of cerebellar granule neurons that is observed in animals and humans exposed to ethanol during gestation.  相似文献   
229.
The serotonin neural system originates from ten nuclei in the mid- and hindbrain regions. The cells of the rostral nuclei project to almost every area of the forebrain, including the hypothalamus, limbic regions, basal ganglia, thalamic nuclei, and cortex. The caudal nuclei project to the spinal cord and interact with numerous autonomic and sensory systems. This article reviews much of the available literature from basic research and relevant clinical research that indicates that ovarian steroid hormones, estrogens and progestins, affect the function of the serotonin neural system. Experimental results in nonhuman primates from this laboratory are contrasted with studies in rodents and humans. The sites of action of ovarian hormones on the serotonin neural system include effects within serotonin neurons as well as effects on serotonin afferent neurons and serotonin target neurons. Therefore, information on estrogen and progestin receptor-containing neurons was synthesized with information on serotonin afferent and efferent circuits. The ability of estrogens and progestins to alter the function of the serotonin neural system at various levels provides a cellular mechanism whereby ovarian hormones can impact mood, cognition, pain, and numerous other autonomic functions.  相似文献   
230.
神经元凋亡的离体模型及其检测技术   总被引:1,自引:0,他引:1  
近年来,随着细胞凋亡研究的深入,神经元凋亡与神经退变病的关系愈发引人注目,已建立多种神经元凋亡的离体模型.多种因素如营养剥夺、自由基、谷氨酸、低钙及β-淀粉样蛋白等均可诱发神经元凋亡.凋亡的检测,可先从酶或蛋白质的变化判断神经元的损伤情况,再结合形态学观察,最后通过DNA电泳等确证.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号