首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5243篇
  免费   201篇
  国内免费   200篇
  2023年   74篇
  2022年   68篇
  2021年   118篇
  2020年   122篇
  2019年   198篇
  2018年   186篇
  2017年   140篇
  2016年   170篇
  2015年   106篇
  2014年   207篇
  2013年   616篇
  2012年   108篇
  2011年   210篇
  2010年   113篇
  2009年   195篇
  2008年   198篇
  2007年   193篇
  2006年   207篇
  2005年   172篇
  2004年   147篇
  2003年   168篇
  2002年   157篇
  2001年   112篇
  2000年   91篇
  1999年   92篇
  1998年   100篇
  1997年   71篇
  1996年   92篇
  1995年   73篇
  1994年   92篇
  1993年   79篇
  1992年   78篇
  1991年   67篇
  1990年   45篇
  1989年   63篇
  1988年   44篇
  1987年   52篇
  1986年   46篇
  1985年   76篇
  1984年   91篇
  1983年   68篇
  1982年   80篇
  1981年   65篇
  1980年   57篇
  1979年   41篇
  1978年   26篇
  1977年   18篇
  1976年   16篇
  1974年   7篇
  1973年   12篇
排序方式: 共有5644条查询结果,搜索用时 15 毫秒
141.
Abstract: In this study we have described a series of new and potent inhibitors of the vesicular uptake of glutamate. The two most efficient inhibitors were the dyes Evans blue and Chicago Skye Blue 6B, which are structurally related to glutamate and were competitive inhibitors in the nanomolar range. The anion channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (SITS) and the diuretics furosemide and bumetanide are inhibitors of chloride transport in other organs but were competitive inhibitors of glutamate and noncompetitive with respect to chloride ions. Evans blue, Chicago Skye Blue 6B, SITS, furosemide, and bumetanide are all large organic acids with two centers of negative charge and an electron-donating group at close vicinity of the negative charge at physiological pH. The inhibition of the glutamate uptake with these inhibitors was noncompetitive with respect to Cl. The inhibitors, therefore, probably interact directly with the glutamate carrier. Bafilomycin A1, which is a specific vacuolar ATPase inhibitor, was used as a control and inhibited the vesicular dopamine, glutamate, and GABA uptake to the same extent. None of the inhibitors had any effect on the plasma membrane carrier, which is therefore clearly different from the vesicular carrier.  相似文献   
142.
In potato tubers two starch phosphorylase isozymes, types L and H, have been described and are believed to be responsible for the complete starch breakdown in this tissue. Type L has been localized in amyloplasts, whereas type H is located within the cytosol. In order to investigate whether the same isozymes are also present in potato leaf tissue a cDNA expression library from potato leaves was screened using a monoclonal antibody recognizing both isozyme forms. Besides the already described tuber L-type isozyme a cDNA clone encoding a second L-type isozyme was isolated. The 3171 nucleotide long cDNA clone contains an uninterrupted open reading frame of 2922 nucleotides which encodes a polypeptide of 974 amino acids. Sequence comparison between both L-type isozymes on the amino acid level showed that the polypeptides are highly homologous to each other, reaching 81–84% identity over most parts of the polypeptide. However the regions containing the transit peptide (amino acids 1–81) and the insertion sequence (amino acids 463–570) are highly diverse, reaching identities of only 22.0% and 29.0% respectively.Northern analysis revealed that both forms are differentially expressed. The steady-state mRNA levels of the tuber L-type isozyme accumulates strongly in potato tubers and only weakly in leaf tissues, whereas the mRNA of the leaf L-type isozyme accumulates in both tissues to the same extent. Constitutive expression of an antisense RNA specific for the leaf L-type gene resulted in a strong reduction of starch phosphorylase L-type activity in leaf tissue, but had only sparse effects in potato tuber tissues. Determination of the leaf starch content revealed that antisense repression of the starch phosphorylase activity has no significant influence on starch accumulation in leaves of transgenic potato plants. This result indicated that different L-type genes are responsible for the starch phosphorylase activity in different tissues, but the function of the different enzymes remains unclear.  相似文献   
143.
Regulation of DOPA Decarboxylase Activity in Brain of Living Rat   总被引:4,自引:1,他引:3  
Abstract: To test the hypothesis that l -DOPA decarboxylase (DDC) is a regulated enzyme in the synthesis of dopamine (DA), we developed a model of the cerebral uptake and metabolism of [3H]DOPA. The unidirectional blood-brain clearance of [3H]DOPA ( K D1) was 0.049 ml g−1 min−1. The relative DDC activity ( k D3) was 0.26 min−1 in striatum, 0.04 min−1 in hypothalamus, and 0.02 min−1 in hippocampus. In striatum, 3,4-[3H]dihydroxyphenylacetic acid ([3H]DOPAC) was formed from [3H]DA with a rate constant of 0.013 min−1, [3H]homovanillic acid ([3H]HVA) was formed from [3H]DOPAC at a rate constant of 0.020 min−1, and [3H]HVA was eliminated from brain at a rate constant of 0.037 min−1. Together, these rate constants predicted the ratios of endogenous DOPAC and HVA to DA in rat striatum. Pargyline, an inhibitor of DA catabolism, substantially reduced the contrast between striatum and cortex, in comparison with the contrast seen in autoradiograms of control rats. At 30 min and at 4 h after pargyline, k D3 was reduced by 50% in striatum and olfactory tubercle but was unaffected in hypothalamus, indicating that DDC activity is reduced in specific brain regions after monoamine oxidase inhibition. Thus, DDC activity may be a regulated step in the synthesis of DA.  相似文献   
144.
Summary 1. Site directed mutagenesis was used to alter the structure ofTorpedo californica nicotinic acetylcholine receptor (nAChR) and to identify amino acid residues which contribute to noncompetitive inhibition by quinacrine. Mutant receptors were expressed inXenopus laevis oocytes injected within vitro synthesized mRNA and the whole cell currents induced by acetylcholine (ACh) were recorded by two electrode voltage clamp.2. A series of mutations of a highly conserved Arg at position 209 of the subunit ofTorpedo californica nAChR revealed that positively charged amino acids are required for functional receptor expression. Mutation of Arg to Lys (R209K) or His (R209H) at position 209 shifted the EC50 for ACh slightly from 5µM to 12µM and increased the normalized maximal channel activity 8.5-and 3.2-fold, respectively.3. These mutations altered the sensitivity of nAChR to noncompetitive inhibition by quinacrine. The extent of inhibition of ion channel function by quinacrine was decreased as pH increased in both wild type and mutant nAChR suggesting that the doubly charged form of quinacrine was responsible for the inhibition.4. Further mutations at different positions of the subunit suggest the contribution of Pro and Tyr residues at positions 211 and 213 to quinacrine inhibition whereas mutationsI210A andL212A did not have any effects. None of these mutations changed the sensitivity of nAChR to inhibition by a different noncompetitive inhibitor, chlorpromazine.5. These findings support a hypothesis that the quinacrine binding site is located in the lumen of the ion channel. In addition, the quantitative effect of point mutations at alternate positions on the sensitivity of quinacrine inhibition suggests that the secondary structure at the beginning of M1 region might be sheet structure.  相似文献   
145.
The inhibition of lipid peroxidation and radical scavenging effects were studied to evaluate the antioxidant activity for extracts of 17 species of seaweed. The antioxidant effect was evaluated by determination of lipoxygenase activity and by α, α-diphenyl-β-picrylhydrazyl (DPPH) decolorization. Lipoxygenase activity was depressed in the presence of aqueous and ethanol extracts of 4 algal species; Sargassum species had the highest antioxidant activity of all the species examined. The ethanol extracts of one Sargassum species showed competitive inhibition with the substrate. The same species also showed radical scavenging activity in the DPPH decolorization test. Comparison of these results shows no relationship between enzyme inhibition and radical scavenging activity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
146.
Despite evidence which supports a neurotransmitter-like role for nitric oxide (NO) in the CNS, relatively little is known regarding mechanisms which control NO formation within CNS neurons. In this study, isolated nerve endings (synaptosomes) from rat cerebral cortex were used to ascertain whether NO can autoregulate its own formation within neurons through feedback inhibition of the NO biosynthetic enzyme nitric oxide synthase (NOS). Under the conditions described here, N-nitro-l-arginine methyl ester-sensitive conversion ofl-[3H]arginine intol-[3H]citrulline (i.e., NOS activity) was found to be highly calcium-dependent and strongly inhibited (up to 60 percent) by NO donors, including sodium nitroprusside, hydroxylamine and nitroglycerin. The inhibitory effect of sodium nitroprusside was concentration-dependent (IC50100 M) and prevented by the NO scavenger oxyhemoglobin.l-Citrulline, the other major end-product from NOS, had no apparent effect on synaptosomal NOS activity. Taken together, these results indicate that neuronal NOS can be inhibited by NO released from exogenous donors and, therefore, may be subject to end-product feedback inhibition by NO that is formed locally within neurons or released from proximal cells.  相似文献   
147.
Abstract A new sulfated, cyclic depsipeptide, called cyanopeptolin S, from Microcystis sp. was isolated from a water bloom in the Auensee/Leipzig (Germany). The depsipeptide had a relative molecular mass of 925 and contained l-arginine, l-threonine, l-isoleucine, N-methyl-l-phenylalanine, a l-glutamic acid-δ-aldehyde ring system and a sulfated d-configurated glyceric acid as a side chain. The structure was elucidated by means of two-dimensional 1H and 13C nuclear magnetic resonance spectroscopy, fast atom bombardment mass spectroscopy, Fourier transformed infrared spectroscopy and combined gas-liquid chromatography/mass spectrometry. Cyanopeptolin S inhibited trypsin with an IC50≤ 0.2 μg ml−1.  相似文献   
148.
149.
Cotyledons excised from dark-grown seedlings of cucumber (Cucumis sativus L.) were cultured in vitro under UV radiation at different wavelengths, obtained by passage of light through cut-off filters with different transmittance properties. Growth and the synthesis of chlorophyll (Chl) in cotyledons were inhibited and malondialdehyde was accumulated upon irradiation at wavelengths below 320 nm. Exogenous application of scavengers of free radicals reversed the growth inhibition induced by UV-B. Measurement of the fluorescence of Chl a suggested that electron transfer in photosystems was affected by UV-B irradiation. On the basis of these results, the involvement is postulated of active species of oxygen in damages to thylakoid membranes and the growth inhibition that are induced by UV-B irradiation.Abbreviations Chl chlorophyll - Fm maximal fluorescence (dark) - Fm maximal fluorescence (light) - Fv variable fluorescence (dark) - Fv variable fluorescence (light) - MDA malondialdehyde - O2 Superoxide radical - PS photosystem - qN non-photochemical quenching of fluorescence - qP photochemical quenching of fluorescence - UV-BBE biologically effective UV-B radiation - WL(T = 0.5) wavelength at which 50% transmittance occurs  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号