首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5412篇
  免费   343篇
  国内免费   108篇
  5863篇
  2024年   12篇
  2023年   71篇
  2022年   105篇
  2021年   138篇
  2020年   146篇
  2019年   193篇
  2018年   215篇
  2017年   96篇
  2016年   145篇
  2015年   170篇
  2014年   343篇
  2013年   447篇
  2012年   224篇
  2011年   346篇
  2010年   300篇
  2009年   275篇
  2008年   300篇
  2007年   331篇
  2006年   274篇
  2005年   280篇
  2004年   220篇
  2003年   205篇
  2002年   154篇
  2001年   92篇
  2000年   86篇
  1999年   96篇
  1998年   77篇
  1997年   91篇
  1996年   66篇
  1995年   49篇
  1994年   48篇
  1993年   31篇
  1992年   30篇
  1991年   20篇
  1990年   16篇
  1989年   14篇
  1987年   9篇
  1986年   4篇
  1985年   12篇
  1984年   20篇
  1983年   15篇
  1982年   17篇
  1981年   10篇
  1980年   6篇
  1979年   10篇
  1978年   13篇
  1977年   8篇
  1976年   9篇
  1975年   4篇
  1974年   8篇
排序方式: 共有5863条查询结果,搜索用时 15 毫秒
991.
Monocytes, macrophages, and foam cells expressing CD147 can stimulate the production of several matrix metalloproteinases (MMPs) associated with the development of atherosclerosis. We defined the CD147 expression profile and examined the correlation between foam cell development and MMP-2, -9 expressions. Foam cells were derived from U937-stimulated macrophages using various concentrations of oxidized low-density lipoprotein (ox-LDL). PMA-stimulated U937 cells had a 4- to 5-fold increase in CD147 mRNA compared to undifferentiated monocytes and membrane-associated (mCD147) on foam cells decreased in response to ox-LDL in a dose-dependent manner compared to untreated macrophages. In contrast, ox-LDL treatment increased the levels of soluble CD147 (sCD147) and MMP-2, -9 in a dose-dependent manner. Our data suggested that monocyte differentiation up-regulated CD147 expression and lipid enrichment of foam cells had no effect on CD147 mRNA expression. Lipid loading in macrophages reduced mCD147 expression while increasing the levels of MMP-2, -9 and sCD147 in supernatants.  相似文献   
992.
Platelet activation due to vascular injury is essential for hemostatic plug formation, and is mediated by agonists, such as thrombin, which trigger distinct receptor-coupled signaling pathways. Thrombin is a coagulation protease, which activates G protein-coupled protease-activated receptors (PARs) on the surface of platelets. We found that C57BL/6J and BALB/C mice that are deficient in protein kinase C θ (PKCθ), exhibit an impaired hemostasis, and prolonged bleeding following vascular injury. In addition, murine platelets deficient in PKCθ displayed an impaired thrombin-induced platelet activation and aggregation response. Lack of PKCθ also resulted in impaired α-granule secretion, as demonstrated by the low surface expression of CD62P, in thrombin-stimulated platelets. Since PAR4 is the only mouse PAR receptor that delivers thrombin-induced activation signals in platelets, our results suggest that PKCθ is a critical effector molecule in the PAR4-linked signaling pathways and in the regulation of normal hemostasis in mice.  相似文献   
993.
We previously demonstrated that CD151 forms a functional complex with c-Met and integrin α3/α6 in human salivary gland cancer cells. In the current study, we investigated the involvement of CD151, c-Met, and integrin α3/α6 in the cellular morphogenesis of human breast cancer cells. Knockdown of CD151, integrin α3, or integrin α6 expression abolished branching morphogenesis. Decreased c-Met expression in these cells led to the formation of rudimentary networks and prevented their conversion. Furthermore, hepatocyte growth factor (HGF) promoted cellular morphogenesis by accelerating network reorganization. Immunoprecipitation revealed a specific association between CD151 and c-Met. The involvement of CD151 and integrin α3/α6 in HGF-dependent signaling was confirmed by the decreased Akt phosphorylation in cells lacking CD151, integrin α3, or integrin α6. Hence, the regulation of CD151 expression might contribute to changes in HGF/c-Met signaling and thereby modulate the phenotypic characteristics of cancer cells.  相似文献   
994.
Membrane lipid composition of cells in the nervous system is unique and displays remarkable diversity. Cholesterol metabolism and homeostasis in the central nervous system and their role in neuronal function represent important determinants in neuropathogenesis. The serotonin1A receptor is an important member of the G-protein coupled receptor superfamily, and is involved in a variety of cognitive, behavioral, and developmental functions. We report here, for the first time, that the ligand binding function of human serotonin1A receptors exhibits an increase in membranes isolated from cholesterol-depleted neuronal cells. Our results gain pharmacological significance in view of the recently described structural evidence of specific cholesterol binding site(s) in GPCRs, and could be useful in designing better therapeutic strategies for neurodegenerative diseases associated with GPCRs.  相似文献   
995.
996.
Cholesterol is an essential component of lysosomal membranes. In this study, we investigated the effects of membrane cholesterol on the permeability of rat liver lysosomes to K+ and H+, and the organelle stability. Through the measurements of lysosomal β-hexosaminidase free activity, membrane potential, membrane fluidity, intra-lysosomal pH, and lysosomal proton leakage, we established that methyl-β-cyclodextrin (MβCD)-produced loss of membrane cholesterol could increase the lysosomal permeability to both potassium ions and protons, and fluidize the lysosomal membranes. As a result, potassium ions entered the lysosomes through K+/H+ exchange, which produced osmotic imbalance across the membranes and osmotically destabilized the lysosomes. In addition, treatment of the lysosomes with MβCD caused leakage of the lysosomal protons and raised the intra-lysosomal pH. The results indicate that membrane cholesterol plays important roles in the maintenance of the lysosomal limited permeability to K+ and H+. Loss of this membrane sterol is critical for the organelle acidification and stability.  相似文献   
997.
The fetal liver serves as the predominant hematopoietic organ until birth. However, the mechanisms underlying this link between hematopoiesis and hepatogenesis are unclear. Previously, we reported the isolation of a monoclonal antibody (anti-Liv8) that specifically recognizes an antigen (Liv8) present in murine fetal livers at embryonic day 11.5 (E11.5). Liv8 is a cell surface molecule expressed by hematopoietic cells in both fetal liver and adult mouse bone marrow. Here, we report that Liv8 is also transiently expressed by hepatoblasts at E11.5. Using protein purification and mass spectrometry, we have identified Liv8 as the CD44 protein. Interestingly, the expression of Liv8/CD44 in fetal liver was completely lost in AML1/ murine embryos, which lack definitive hematopoiesis. These results show that hepatoblasts change from Liv8/CD44-negative to Liv8/CD44-positive status in a hematopoiesis-dependent manner by E11.5, and indicate that Liv8/CD44 expression is an important link between hematopoiesis and hepatogenesis during fetal liver development.  相似文献   
998.
Cancer stem cell (CSC) theory suggests that only a small subpopulation of cells having stem cell-like potentials can initiate tumor development. While recent data on acute lymphoblastic leukemia (ALL) are conflicting, some studies have demonstrated the existence of such cells following CD34-targeted isolation of primary samples. Although CD34 is a useful marker for the isolation of CSCs in leukemias, the identification of other specific markers besides CD34 has been relatively unsuccessful. To identify new markers, we first performed extensive analysis of surface markers on several B-ALL cell lines. Our data demonstrated that every B-ALL cell line tested did not express CD34 but certain lines contained cell populations with marked heterogeneity in marker expression. Moreover, the CD9+ cell population possessed stem cell characteristics within the clone, as demonstrated by in vitro and transplantation experiments. These results suggest that CD9 is a useful positive-selection marker for the identification of CSCs in B-ALL.  相似文献   
999.
Corneal epithelial stem cells (CESCs) are essential for maintaining the ocular surface. However, the lack of surface markers for CESCs remains a serious obstacle in the identification of CESCs. Previously, we showed that rabbit limbal epithelial side population (rLE-SP) cells exhibited stem cell phenotypes including increased expression of CD61, a marker for mouse hematopoietic stem cells. Here, we demonstrate that nectin-3, an immunoglobulin-like cell-cell adhesion molecule, is highly expressed in rLE-SP cells. Additionally, nectin-3+ cells were significantly enriched among CD61+rLE-SP cells as compared to CD61rLE-SP cells. In mouse bone marrow side population cells, a correlation between expression of nectin-3 and CD61 was also observed. These data strongly suggest that nectin-3 may contribute to the identification of CESCs.  相似文献   
1000.
A colostral proline-rich polypeptide complex (PRP) consisting of over 30 peptides shows beneficial effects in Alzheimer’s disease (AD) patients when administered in the form of sublinqual tablets called Colostrinin. The aim of the present studies was to investigate whether nanopeptide fragment of PRP (NP) - one of the PRP complex components can affect aggregation of amyloid β (Aβ1-42). The effect of NP on Aβ aggregation was studied using Thioflavin T (ThT) binding, atomic force microscopy, and analyzing circular dichroism spectra. Results presented suggest that NP can directly interact with amyloid beta, inhibit its aggregation and disrupt existing aggregates acting as a β sheet breaker and reduce toxicity induced by aggregated forms of Aβ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号