首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5041篇
  免费   327篇
  国内免费   97篇
  2024年   8篇
  2023年   56篇
  2022年   77篇
  2021年   125篇
  2020年   131篇
  2019年   178篇
  2018年   197篇
  2017年   87篇
  2016年   138篇
  2015年   150篇
  2014年   327篇
  2013年   423篇
  2012年   206篇
  2011年   330篇
  2010年   286篇
  2009年   260篇
  2008年   295篇
  2007年   321篇
  2006年   266篇
  2005年   263篇
  2004年   212篇
  2003年   200篇
  2002年   146篇
  2001年   87篇
  2000年   83篇
  1999年   92篇
  1998年   70篇
  1997年   87篇
  1996年   60篇
  1995年   45篇
  1994年   44篇
  1993年   30篇
  1992年   26篇
  1991年   14篇
  1990年   12篇
  1989年   12篇
  1988年   4篇
  1985年   9篇
  1984年   19篇
  1983年   9篇
  1982年   13篇
  1981年   9篇
  1980年   6篇
  1979年   6篇
  1978年   10篇
  1977年   8篇
  1976年   7篇
  1975年   4篇
  1974年   6篇
  1973年   3篇
排序方式: 共有5465条查询结果,搜索用时 31 毫秒
801.
The interaction between the human B cell receptor CD40 and its ligand on T cells is critical for B cell proliferation and the regulation of humoral immune responses. CD40 is a member of the tumor necrosis factor receptor (TNFR) family. We report here the construction and analysis of a detailed three-dimensional model of the TNFR-homologous extracellular region of CD40. This study provides an example for structure-based model building in the presence of low sequence similarity. The assessment of model quality and sequence-structure compatibility is emphasized, and limitations of the model are discussed. The current CD40 model predicts structural details beyond the backbone level. Features of the CD40 ligand binding site are discussed in conjunction with the results of a previous mutagenesis study. Proteins 27:59–70 © 1997 Wiley-Liss, Inc.  相似文献   
802.
The polypeptide corresponding to the signal sequence of the M13 coat protein and the five N-terminal residues of the mature protein was prepared by solid-phase peptide synthesis with a 15N isotopic label at the alanine-12 position. Multidimensional solution NMR spectroscopy and molecular modeling calculations indicate that this polypeptide assumes helical conformations between residues 5 and 20, in the presence of sodium dodecylsulfate micelles. This is in good agreement with circular dichroism spectroscopic measurement, which shows an α-helix content of approximately 42%. The α-helix comprises an uninterrupted hydrophobic stretch of ≤12 amino acids, which is generally believed to be too short for a stable transmembrane alignment in a biological bilayer. The monoexponential proton-deuterium exchange kinetics of this hydrophobic helical region is characterized by half-lives of 15–75 minutes (pH 4.2, 323 K). When the polypeptide is reconstituted into phospholipid bilayers, the broad anisotropy of the proton-decoupled 15N solid-state NMR spectroscopy indicates that the hydrophobic helix is immobilized close to the lipid bilayer surface at the time scale of 15N solid-state NMR spectroscopy (10−4 seconds). By contrast, short correlation times, immediate hydrogen-deuterium exchange as well as nuclear Overhauser effect crosspeak analysis suggest that the N and C termini of this polypeptide exhibit a mobile random coil structure. The implications of these structural findings for possible mechanisms of membrane insertion and translocation as well as for membrane protein structure prediction algorithms are discussed. © 1997 Wiley-Liss Inc.  相似文献   
803.
A new electron-deficient tentacle porphyrin meso-tetrakis[2,3,5,6-tetrafluoro-4-(2-trimethylammoniumethylamine)phenyl]porphyrin (TθF4TAP) has been synthesized. The binding interactions of TθF4TAP with DNA polymers were studied for comparison to those of an electron-deficient tentacle porphyrin and an electron-rich tentacle porphyrin; these previously studied porphyrins bind to DNA primarily by intercalative and outside-binding modes, respectively. The three tentacle porphyrins have similar size and shape. The basicity of TθF4TAP indicated that it has electronic characteristics similar to those of the intercalating electron-deficient tentacle porphyrin. However, TθF4TAP binds to calf thymus DNA, [poly(dA-dT)]2, and [poly(dG-dC)]2 in a self-stacking, outside-binding manner under all conditions. Evidence for this binding mode included a significant hypochromicity of the Soret band, a conservative induced CD spectrum, and the absence of an increase in DNA solution viscosity. As found previously for the electron-rich porphyrin, the results suggest that combinations of closely related self-stacked forms coexist. The mix of forms depended on the DNA and the solution conditions. There are probably differences in the detailed features of the self-stacking adducts for the two types of tentacle porphyrins, especially at high R (ratio of porphyrin to DNA). At low R values, the induced CD signal of TθF4TAP/CT DNA resembled that of TθF4TAP/[poly(dA-dT)]2, suggesting that TθF4TAP binds preferentially at AT regions. Competitive binding experiments gave evidence that TθF4TAP binds preferentially to [poly(dA-dT)]2 over [poly(dG-dC)]2. Thus, despite the long, positively charged, flexible substituents on the porphyrin, the binding of TθF4TAP is significantly affected by base-pair composition. Similar characteristics were found previously for the electron-rich tentacle porphyrin. Thus, significant changes in electron richness have relatively minor effects on this outside binding selectivity for AT regions. TθF4TAP is the first porphyrin with electron deficiency and shape similar to intercalating porphyrins that does not appear to intercalate. All porphyrins reported to intercalate have had pyridinium substituents. Thus, the electronic distribution in the porphyrin ring, not just the overall electron richness, may play a role in facilitating intercalation. © 1997 John Wiley & Sons, Inc. Biopoly 42: 203–217, 1997  相似文献   
804.
805.
The tumor suppresser protein p53 has been called the “guardian of the genome.” DNA damage induces p53 to either halt the cell cycle, allowing for repair, or initiate apoptosis. P53 is mutated in over 50% of human tumors and it has been proposed that many tumorigenic mutations are deleterious to p53 because they induce local unfolding. To explore this hypothesis, peptide models have been developed to study tumorigenic mutations in the H2 helix of the p53 core domain. This helix is rich with charged residues and is a key component of the DNA binding region. A 16‐residue peptide corresponding to the H2 wild‐type sequence extended with an Ala‐rich C‐terminus was synthesized and studied by 1H‐nmr (500 MHz) and CD. The nmr studies demonstrate that this peptide adopts helical structure in solution. Six additional peptides corresponding to subtle tumorigenic mutations were synthesized and CD was used to assess the relative stability of these “mutant analogues.” All six mutations studied are destabilizing relative to the wild type, with ΔΔG values in the range of 0.26 to 1.35 kcal mol−1. Surprisingly, substitution of Asp 281 with Ala resulted in a peptide with the greatest destabilization even though Ala possesses the largest helix propensity of the common 20 amino acids. Because this helix appears to be stabilized mainly by local electrostatics, we conclude that its structure is susceptible to even the most conservative mutations. These results provide support for the hypothesis that tumorigenic mutations induce local unfolding of p53. © 1999 John Wiley & Sons, Inc. Biopoly 49: 215–224, 1999  相似文献   
806.
Quasi‐elastic light scattering (QELS), electrophoretic light scattering (ELS), CD spectroscopy, and azide binding titrations were used to study the complexation at pH 6.8 between ferrihemoglobin and three polyelectrolytes that varied in charge density and sign. Both QELS and ELS show that the structure of the soluble complex formed between ferrihemoglobin and poly(diallyldimethylammonium chloride) [PDADMAC] varies with protein concentration. At fixed 1.0 mg/mL polyelectrolyte concentration, protein addition increases complex size and decreases complex mobility in a tightly correlated manner. At 1.0 mg/mL or greater protein concentration, a stable complex is formed between one polyelectrolyte chain and many protein molecules (i.e., an intra‐polymer complex) with apparent diameter approximately 2.5 times that of the protein‐free polyelectrolyte. Under conditions of excess polyelectrolyte, each of the three ferrihemoglobin–polyelectrolyte solutions exhibits a single diffusion mode in QELS, which indicates that all protein molecules are complexed. CD spectra suggest little or no structural disruption of ferrihemoglobin upon complexation. Azide binding to the ferrihemoglobin–poly(2‐acrylamide‐2‐methylpropanesulfonate) [PAMPS] complex is substantially altered relative to the polyelectrolyte‐free protein, but minimal change is induced by complexation with an AMPS‐based copolymer of reduced linear charge density. The change in azide binding induced by PDADMAC is intermediate between that of PAMPS and its copolymer. © 1999 John Wiley & Sons, Inc. Biopoly 50: 153–161, 1999  相似文献   
807.
The β‐subunit of the human chorionic gonadotropin (hCG) hormone, which is believed to be related to certain types of cancer, contains three hairpin‐like fragments. To investigate the role of β‐hairpin formation in the early stages of the hCGβ folding, a 28‐residue peptide with the sequence RDVRFESIRLPGSPRGVNPVVSYAVALS, corresponding to the H3‐β hairpin fragment (residues 60–87) of the hCGβ subunit, was studied under various conditions using three optical spectroscopic methods: Fourier transform ir spectroscopy, electronic CD, and vibrational CD. Environmental conditions are critical factors for formation of secondary structure in this peptide. TFE : H2O mixed solvents induced helical formation. Formation of β‐structure in this peptide, which may be related to the native β‐hairpin formation in the intact hormone, was found to be induced only under conditions such as high concentration, high temperature, and the presence of nonmicellar sodium dodecyl sulfate concentrations. These findings support a protein folding mechanism for the hCGβ subunit in which an initial hydrophobic collapse, which increases intermolecular interactions in hCGβ, is needed to induce the H3‐β hairpin formation. © 1999 John Wiley & Sons, Inc. Biopoly 50: 413–423, 1999  相似文献   
808.
目的 制备鼠抗树鼩CD3ε单克隆抗体,并对其生物学特性进行鉴定。  相似文献   
809.
In this research, molecular docking and 3D-QSAR studies were carried out on a series of 79 thiazoloquin(az)olin(on)es as CD38 inhibitors. Based on docking results, four interactions including hydrogen bonding with main chain of GLU-226 (H-M-GLU-226), Van der Waals interactions with side chain of TRP-125 (V-S-TRP-125), TRP-189 (V-S-TRP-189), and THR-221 (V-S-THR-221) were considered as pharmacological interactions. Active conformation of each ligand was extracted from docking studies and was used for carrying out 3D-QSAR modeling. Comparative molecular field analysis (CoMFA) was performed on CD38 inhibitory activities of these compounds on human and mouse. We developed CoMFA models with five components as optimum models for both data-sets. For human data-set, a model with high predictive power was developed. R2, RMSE, and F-test values for training set of this model were .94, .24, and 179.58, respectively, and R2 and RMSE for its test set were .92 and .32, respectively. The q2 and RMSE values for leave-one-out cross validation test on training set were .78 and .46, respectively, that demonstrate created model is robust. Based on extracted steric and electrostatic contour maps for this model, three inhibitors with pIC50 larger than 8.85 were designed.  相似文献   
810.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号