首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5118篇
  免费   332篇
  国内免费   99篇
  5549篇
  2024年   11篇
  2023年   60篇
  2022年   90篇
  2021年   127篇
  2020年   135篇
  2019年   197篇
  2018年   205篇
  2017年   89篇
  2016年   139篇
  2015年   153篇
  2014年   329篇
  2013年   428篇
  2012年   207篇
  2011年   332篇
  2010年   290篇
  2009年   261篇
  2008年   296篇
  2007年   324篇
  2006年   266篇
  2005年   264篇
  2004年   212篇
  2003年   200篇
  2002年   150篇
  2001年   89篇
  2000年   81篇
  1999年   93篇
  1998年   70篇
  1997年   88篇
  1996年   60篇
  1995年   45篇
  1994年   44篇
  1993年   30篇
  1992年   26篇
  1991年   14篇
  1990年   12篇
  1989年   12篇
  1988年   4篇
  1985年   9篇
  1984年   19篇
  1983年   9篇
  1982年   12篇
  1981年   9篇
  1980年   6篇
  1979年   6篇
  1978年   10篇
  1977年   8篇
  1976年   7篇
  1975年   4篇
  1974年   6篇
  1973年   3篇
排序方式: 共有5549条查询结果,搜索用时 860 毫秒
31.
Abstract

Resveratrol (Res), a polyphenolic compound found largely in the skin of red grape and wine, exhibits a wide range of pharmaceutical properties and plays a role in prevention of human cardiovascular diseases [Pendurthi et al., Arterioscler. Thromb. Vasc. Biol. 19, 419–426 (1999)]. It shows a strong affinity towards protein binding and used as inhibitor for cyclo- oxygenase and ribonuclease reductase. The aim of this study was to examine the interaction of resveratrol with human serum albumin (HSA) in aqueous solution at physiological conditions, using a constant protein concentration (0.3 mM) and various pigment contents μM to mM). FTIR, UV-Visible, CD, and fluorescence spectroscopic methods were used to determine the resveratrol binding mode, the binding constant and the effects of pigment complexation on protein secondary structure.

Structural analysis showed that resveratrol bind non-specifically (H-bonding) via polypeptide polar groups with overall binding constant of KRes = 2.56× 105 M?1. The protein secondary structure, analysed by CD spectroscopy, showed no major alterations at low resveratrol concentrations (0.125 mM), whereas at high pigment content (1 mM), major increase of α-helix from 57% (free HSA) to 62% and a decrease of β-sheet from 10% (free HSA) to 7% occurred in the resveratrol-HSA complexes. The results indicate a partial stabilization of protein secondary structure at high resveratrol content.  相似文献   
32.
33.
pp60 c-src kinase activity can be increased by phosphotyrosine dephosphorylation or growth factor-dependent phosphorylation reactions. Expression of the transmembrane phosphotyrosine phosphatase (PTPase) CD45 has been shown to inhibit growth factor receptor signal transduction (Mooney, RA, Freund, GG, Way, BA and Bordwell, KL (1992) J Biol Chem 267, 23443–23446). Here it is shown that PTPase expression decreased platelet-derived growth factor (PDGF)-dependant activation of pp60 c-src but failed to increase hormone independent (basal) pp60 c-src activity. PDGF-dependent tyrosine phosphorylation of its receptor was reduced by approximately 60% in cells expressing the PTPase. In contrast, a change in phosphotyrosine content of pp60 c-src was not detected in response to PDGF or in PTPase+cells. PDGF increased the intrinsic tyrosine kinase activity of pp60 c-src in both control and PTPase+cells but the effect was smaller in PTPase+cells. In anin vitro assay, hormone-stimulate pp60 c-src autophosphorylation from PTPase+ cells was decreased 64±22%, and substrate phosphorylation by pp60 c-src was reduced 54±16% compared to controls. Hormone-independent pp60 c-src kinase activity was unchanged by expression of the PTPase. pp60 c-src was, however, anin vitro substrate for CD45, being dephosphorylated at both the regulatory (Tyr527) and kinase domain (Tyr416) residues. In addition,in vitro dephosphorylation by CD45 increased pp60 c-src activity. These findings suggest that the PDGF receptor was anin vivo substrate of CD45 but pp60 c-src was not. The lack of activation of pp60 c-src in the presence of expressed PTPase may demonstrate the importance of compartmentalization and/or accessory proteins to PTPase-substrate interactions.Abbreviations PTPase phosphotyrosine phosphatase - PDGF platelet-derived growth factor - PMSF phenylmethylsulfonyl fluoride - LCA, CD45 leukocyte common antigen - PBS phosphate buffered saline - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - DTT dithiothreitol - Na3VO4 sodium orthovanadate - PV pervanadate - -ME -mercaptoethanol  相似文献   
34.
Context: Cluster of differentiation 40 (CD40), and its ligand CD40L, are major co-stimulatory molecules whose interactions are important in both cellular and humoral immunity, and has been suggested to play a role in the pathogenesis of acute coronary syndrome.

Objective: The aim of this study was to examine the association of CD40 polymorphisms (-1?C>T (rs1883832) and 945G>T (rs4810485)) and myocardial infarction (MI), and to test the association of CD40 gene haplotypes with MI in Tunisians.

Materials and methods: Three hundred and fifty MI patients and 301 apparently healthy controls were included in the study. The polymorphisms of CD40 were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).

Results: There were significant differences in the genotype and allele frequencies of CD40 gene -1?C>T (rs1883832) polymorphism between cases and controls. Stratifying according to gender, the association between the TT genotype and MI was statistically significant in males, only. Haplotype analysis revealed that the C-T and T-G haplotypes were associated with an increased risk of MI (p?=?0.012 and p?<?0.001, respectively).

Conclusions: Our work showed a significant association between the -1?C>T (rs1883832) polymorphism of the CD40 gene and MI in the Tunisians.  相似文献   

35.
The breast cancer tumor suppressor protein BRCA1 is involved in DNA repair and cell cycle control. Mutations at the two C‐terminal tandem (BRCT) repeats of BRCA1 detected in breast tumor patients were identified either to lower the stability of the BRCT domain and/or to disrupt the interaction of BRCT with phoshpopeptides. The aim of this study was to analyze five BRCT pathogenic mutations for their effect on structural integrity and protein stability. For this purpose, the five cancer‐associated BRCT mutants: V1696L, M1775K, M1783T, V1809F, and P1812A were cloned in suitable prokaryotic protein production vectors, and the recombinant proteins were purified in soluble and stable form for further biophysical studies. The biophysical analysis of the secondary structure and the thermodynamic stability of the wild‐type, wt, and the five mutants of the BRCT domain were performed by Circular Dichroism Spectroscopy (CD) and Differential Scanning Microcalorimetry (DSC), respectively. The binding capacity of the wt and mutant BRCT with (pBACH1/BRIP1) and pCtIP were measured by Isothermal Titration Calorimetry (ITC). The experimental results demonstrated that the five mutations of the BRCT domain: (i) affected the thermal unfolding temperature as well as the unfolding enthalpy of the domain, to a varying degree depending upon the induced destabilization and (ii) altered and/or abolished their affinity to synthetic pBACH1/BRIP1 and pCtIP phosphopeptides by affecting the structural integrity of the BRCT active sites. The presented experimental results are one step towards the elucidation of the effect of various missense mutations on the structure and function of BRCA1‐BRCT. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
36.
Previous studies demonstrated a direct correlation with loss of kangai-1 (KAI1), a metastasis suppressor, and poor prognosis in human prostate and other cancers. In this study, we have characterized the age-dependent downregulation of KAI1 in the TRAMP model which was reversed when mice were fed a genistein-enriched diet. We demonstrated here that doses of genistein (5 and 10 microM)--achievable by supplement intake--significantly induced the expression of KAI1, both at the mRNA and protein levels (up to 2.5-fold), and decreased the invasiveness of TRAMP-C2 cells >2.0-fold. We have pinpointed KAI1 as the invasion suppressor, since its knockdown by siRNA restored the invasive potential of genistein-treated TRAMP-C2 cells to control levels. This work provides the first evidence that genistein treatment may counteract KAI1 downregulation, which is observed in many cancer types and therefore, could be used in anti-metastatic therapies.  相似文献   
37.
Spinigerin is a linear antibacterial peptide derived from a termite insect. It consists of 25 amino acids and is devoid of cysteines. Spinigerin displays good lytic activities against Gram-positive and Gram-negative bacteria, but has no hemolytic activities against human erythrocytes. In this study, we present a three-dimensional solution structure of spinigerin in SDS micelles. According to CD data spinigerin has an alpha-helical conformation in the presence of TFE, DPC micelles, and SDS micelles. The three-dimensional structure of spinigerin as determined by NMR spectroscopy contains a stable alpha-helix from Lys4 to Thr23. Spinigerin (4-21), an 18-residue fragment from Lys4 to Leu21, contains a similar content of alpha-helical structure compared to native spinigerin and was found to retain antibacterial activity, too. Therefore, this alpha-helical structure and the strong electrostatic attraction between four Lys and three Arg residues in spinigerin and the negatively charged polar head groups of the phospholipids on the membrane surface play important roles in disrupting membrane and subsequent cell death.  相似文献   
38.
A 15-residue peptide dimer G15 derived from the cell lytic protein granulysin has been shown to exert potent activity against microbes, including E. coli, but not against human Jurkat cells [Z. Wang, E. Choice, A. Kaspar, D. Hanson, S. Okada, S.C. Lyu, A.M. Krensky, C. Clayberger, Bactericidal and tumoricidal activities of synthetic peptides derived from granulysin. J. Immunol. 165 (2000) 1486-1490]. We investigated the target membrane selectivity of G15 using fluorescence, circular dichroism and 31P NMR methods. The ANS uptake assay shows that the extent of E. coli outer membrane disruption depends on G15 concentration. 31P NMR spectra obtained from E. coli total lipid bilayers incorporated with G15 show disruption of lipid bilayers. Fluorescence binding studies on the interaction of G15 with synthetic liposomes formed of E. coli lipids suggest a tight binding of the peptide at the membrane interface. The peptide also binds to negatively charged POPC/POPG (3:1) lipid vesicles but fails to insert deep into the membrane interior. These results are supported by the peptide-induced changes in the measured isotropic chemical shift and T1 values of POPG in 3:1 POPC:POPG multilamellar vesicles while neither a non-lamellar phase nor a fragmentation of bilayers was observed from NMR studies. The circular dichroism studies reveal that the peptide exists as a random coil in solution but folds into a less ordered conformation upon binding to POPC/POPG (3:1) vesicles. However, G15 does not bind to lipid vesicles made of POPC/POPG/Chl (9:1:1) mixture, mimicking tumor cell membrane. These results explain the susceptibility of E. coli and the resistance of human Jurkat cells to G15, and may have implications in designing membrane-selective therapeutic agents.  相似文献   
39.
We have recently identified apurinic/apyrimidinic endonuclease 1 (APE1) as an endoribonuclease that cleaves c-myc mRNA in vitro and regulates c-myc mRNA levels and half-life in cells. This study was undertaken to further unravel the RNA-cleaving properties of APE1. Here, we show that APE1 cleaves RNA in the absence of divalent metal ions and, at 2 mM, Zn2+, Ni2+, Cu2+, or Co2+ inhibited the endoribonuclease activity of APE1. APE1 is able to cleave CD44 mRNA, microRNAs (miR-21, miR-10b), and three RNA components of SARS-corona virus (orf1b, orf3, spike) suggesting that, when challenged, it can cleave any RNAs in vitro. APE1 does not cleave strong doublestranded regions of RNA and it has a strong preference for 3’ of pyrimidine, especially towards UA, CA, and UG sites at single-stranded or weakly paired regions. It also cleaves RNA weakly at UC, CU, AC, and AU sites in single-stranded or weakly paired regions. Finally, we found that APE1 can reduce the ability of the Dicer enzyme to process premiRNAs in vitro. Overall, this study has revealed some previously unknown biochemical properties of APE1 which has implications for its role in vivo.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号