首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4791篇
  免费   199篇
  国内免费   99篇
  2023年   77篇
  2022年   121篇
  2021年   138篇
  2020年   171篇
  2019年   305篇
  2018年   273篇
  2017年   213篇
  2016年   174篇
  2015年   101篇
  2014年   261篇
  2013年   500篇
  2012年   132篇
  2011年   266篇
  2010年   131篇
  2009年   151篇
  2008年   178篇
  2007年   195篇
  2006年   141篇
  2005年   153篇
  2004年   124篇
  2003年   127篇
  2002年   106篇
  2001年   69篇
  2000年   55篇
  1999年   58篇
  1998年   70篇
  1997年   60篇
  1996年   47篇
  1995年   65篇
  1994年   47篇
  1993年   51篇
  1992年   50篇
  1991年   31篇
  1990年   28篇
  1989年   29篇
  1988年   24篇
  1987年   20篇
  1986年   29篇
  1985年   37篇
  1984年   50篇
  1983年   24篇
  1982年   37篇
  1981年   32篇
  1980年   48篇
  1979年   19篇
  1978年   11篇
  1977年   9篇
  1976年   8篇
  1975年   10篇
  1973年   16篇
排序方式: 共有5089条查询结果,搜索用时 125 毫秒
201.
The main function of carbonic anhydrases (CAs) in cancer cells is the pH regulation through a conversion of H2O and CO2 to H+ and HCO3. However, the data of in vitro and in vivo studies have demonstrated that transmembrane isoforms of CA IX and CA XII are involved in various steps of cancer cell migration, invasion and metastasis. According to literature, inhibition of these CAs can affect the expression of multiple proteins. Some scientific groups have reported the possible interactions between CA IX and E-cadherin–catenin system, CA IX and integrins, CA IX, CA XII and ion transporters, which all are highly involved in cell-to-cell adhesion, the formation of membrane protrusions and focal adhesions. Nevertheless, CA IX and CA XII have a high impact on tumour growth and metastases formation. The data discussed in this review are quite recent. It highly support the role of CA IX and CA XII in various cancer metastasis processes through their interactions to other invasion proteins. Nevertheless, all findings show the great potential of these CAs in the context of research and application in clinical use.  相似文献   
202.
Improving aspects of platelet cryopreservation would help ease logistical challenges and potentially expand the utility of frozen platelets. Current cryopreservation procedures damage platelets, which may be caused by ice recrystallization. We hypothesized that the addition of a small molecule ice recrystallization inhibitor (IRI) to platelets prior to freezing may reduce cryopreservation-induced damage and/or improve the logistics of freezing and storage. Platelets were frozen using standard conditions of 5–6% dimethyl sulfoxide (Me2SO) or with supplementation of an IRI, N-(2-fluorophenyl)-d-gluconamide (2FA), prior to storage at −80 °C. Alternatively, platelets were frozen with 5–6% Me2SO at −30 °C or with 3% Me2SO at −80 °C with or without 2FA supplementation. Supplementation of platelets with 2FA improved platelet recovery following storage under standard conditions (p = 0.0017) and with 3% Me2SO (p = 0.0461) but not at −30 °C (p = 0.0835). 2FA supplementation was protective for GPVI expression under standard conditions (p = 0.0011) and with 3% Me2SO (p = 0.0042). Markers of platelet activation, such as phosphatidylserine externalization and microparticle release, were increased following storage at −30 °C or with 3% Me2SO, and 2FA showed no protective effect. Platelet function remained similar regardless of 2FA, although functionality was reduced following storage at −30 °C or with 3% Me2SO compared to standard cryopreserved platelets. While the addition of 2FA to platelets provided a small level of protection for some quality parameters, it was unable to prevent alterations to the majority of in vitro parameters. Therefore, it is unlikely that ice recrystallization is the major cause of cryopreservation-induced damage.  相似文献   
203.
Epithelial-mesenchymal transition (EMT) is associated with cancer malignancies such as invasion, metastasis, and drug resistance. In this study, HCT116 human colorectal cancer cells were transduced with SLUG or SNAIL retroviruses, and EMT cells with mesenchymal morphology were established. The EMT cells showed a high invasive activity and resistance to several anticancer agents such as methotrexate, SN-38, and cisplatin. Furthermore, they contained about 1–10% side population (SP) cells that were not stained by Hoechst 33342. This SP phenotype was not stable; the isolated SP cells generated both SP and non-SP cells, suggesting a potential for differentiation. Gene expression analysis of SP cells suggested the alteration of genes that are involved in epigenetic changes. Therefore, we examined the effect of 74 epigenetic inhibitors, and found that two inhibitors, namely I-BET151 and bromosporine, targeting the bromodomain and extra-terminal motif (BET) proteins, decreased the ratio of SP cells to <50% compared with the control, without affecting the immediate efflux of Hoechst 33342 by transporters. In addition, compared with the parental cells, the EMT cells showed a higher sensitivity to I-BET151 and bromosporine. This study suggests that EMT development and SP phenotype can be independent events but both are regulated by BET inhibitors in SLUG- or SNAIL-transducted HCT116 cells.  相似文献   
204.
We wished to evaluate whether epigenetic modifiers have a beneficial effect on treating experimental periodontitis and mechanisms for regulating the cell fate of mesenchymal stem cells (MSCs) in inflammatory microenvironments. We isolated MSCs from healthy and inflamed gingival tissues to investigate whether trichostatin A (TSA) could improve osteogenic differentiation and resolve inflammation in vitro. The tissue regenerative potentials were evaluated when treated with a temperature-dependent, chitosan-scaffold-encapsulated TSA, in a rat model of periodontitis. After induction with the conditioned medium, TSA treatment increased the osteogenic differentiation potential of inflamed MSCs and healthy MSCs. In addition, interleukin-6 and interleukin-8 levels in supernatants were significantly decreased after TSA treatment. Moreover, TSA promoted osteogenic differentiation by inhibiting nuclear factor-κB (p65) DNA binding in MSCs. In rats with experimental periodontitis, 7 weeks after local injections of chitosan-scaffold-encapsulated TSA, histology and microcomputed tomography showed a significant increase in alveolar bone volume and less inflammatory infiltration compared with vehicle-treated rats. The concentrations of interferon-γ and interleukin-6 were significantly decreased in the gingival crevicular fluid after TSA treatment. This study demonstrated that TSA had anti-inflammatory properties and could promote periodontal tissue repair, which indicated that epigenetic modifiers hold promise as a potential therapeutic option for periodontal tissue repair.  相似文献   
205.
Insect midgut proteases are excellent targets for insecticidal agents such as protease inhibitors. These inhibitors are used for producing transgenic plants, resistant to pests. For achieving this goal, it is necessary to find the nature of specific proteases and their properties for adopting possible pest management procedure. Therefore, characterisation of the enzymes in the gut of the rose sawfly, Arge rosae (Hymenoptera: Argidae), responsible for proteolysis, was performed using a range of synthetic substrates and specific inhibitors. The optimum conditions for general proteases and trypsin were achieved at pH 10. The highest activity for general proteases was obtained at a temperature of 45°C. The use of specific inhibitors and SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) provided evidence to suggest that most of the proteases belonged to the serine group because of high inhibitory effect of phenyl methane sulfonyl fluoride on total proteolytic activity. Also, inhibition assays and zymogram analysis showed that metalloproteases are present in A. rosae digestive system. These results indicated that A. rosae larvae mainly used serine proteases for protein digestion, with chymotrypsin as the dominant form. The kinetic parameters of trypsin-like proteases using N-benzoyl-dl-arg-p-nitroanilide as substrate indicated that the K m and V max values of trypsin in the gut of the fifth instar larvae were 730 ± 17.3 μM and 456 ± 13.85 nmol min?1 mg?1 protein, respectively.  相似文献   
206.
Disrupted-in-schizophrenia 1 (DISC1) is a multifunctional scaffold protein which plays an important role in neurogenesis and neural development in the adult brain, especially in the dentate gyrus (DG) of the hippocampus. Accumulated research has unveiled the role of DISC1 in several aspects of neural development and neurogenesis, such as neuronal maturation, proliferation, migration, positioning, differentiation, dendritic growth, axonal outgrowth, and synaptic plasticity. Studies on the function of this protein have explored multiple facets, including variants and missense mutants in genetics, proteins interactivity and signaling pathways in molecular biology, and pathogenesis and treatment targets of major mental illness, and more. In this review, we present several signaling pathways discussed in recent research, such as the AKT signaling pathway, GABA signaling pathway, GSK3β signaling pathway, Wnt signaling pathway, and NMDA-R signaling pathway. DISC1 interacts, directly or indirectly, with these signaling pathways and they co-regulate the process of adult neurogenesis in the hippocampus.  相似文献   
207.
208.

Background

Variability in MDR1 and PXR has been associated with differences in drug plasma levels and response to antiretroviral therapy. We investigated whether polymorphisms in MDR1 (T-129C, C1236T and C3435T) and PXR (C63396T) affect lopinavir plasma concentration and the virological or immunological response to HAART in HIV-1-infected children.

Methods

Genotypes were identified in 100 blood donors and 38 HIV-1-infected children. All children received HAART with lopinavir boosted with ritonavir (LPV/r) at the time of LPV plasma level quantification, before (Ctrough) and between 1 and 2 h after (Cpost-dose) the administration of the next dose of drug. CD4+ T-cell counts and plasma viral load were analyzed before and after the initiation of LPV/r.

Results

MDR1 1236T, MDR1 3435T and PXR 63396T alleles showed a frequency of ~ 50% while the MDR1 -129C allele only reached 5%. Children heterozygotes 1236CT showed a significantly lower LPV Cpost-dose than homozygotes 1236TT (median Cpost-dose = 3.04 μg/ml and 6.50 μg/ml, respectively; p = 0.016). Children heterozygotes 1236CT also had a lower decrease of viral load after 36 weeks of LPV/r exposure compared with homozygotes 1236CC (median viral load changes = − 0.50 log10 copies/ml and − 2.08 log10 copies/ml, respectively; p = 0.047). No effect on the immunological response was observed for polymorphisms of MDR1 or PXR.

Conclusions

Our results suggest that the MDR1 C1236T SNP significantly reduces LPV plasma concentration affecting the virological response to HAART. Heterozygotes 1236CT might have an altered level of P-gp expression/activity in enterocytes and CD4+ T lymphocytes that limits the absorption of LPV leading to an impaired virological suppression.  相似文献   
209.
Neisseria meningitides is a gram-negative diplococcus bacterium and is the main causative agent of meningitis and other meningococcal diseases. Alanine aminopeptidase from N. meningitides (NmAPN) belongs to the family of metallo-exopeptidase enzymes, which catalyze the removal of amino acids from the N-terminus of peptides and proteins, and are found among all the kingdoms of life. NmAPN is suggested to be mostly responsible for proteolysis and nutrition delivery, similar to the orthologs from other bacteria.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号