首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1001篇
  免费   108篇
  国内免费   178篇
  2024年   2篇
  2023年   73篇
  2022年   82篇
  2021年   131篇
  2020年   121篇
  2019年   142篇
  2018年   109篇
  2017年   80篇
  2016年   56篇
  2015年   74篇
  2014年   49篇
  2013年   35篇
  2012年   22篇
  2011年   27篇
  2010年   31篇
  2009年   26篇
  2008年   33篇
  2007年   21篇
  2006年   26篇
  2005年   20篇
  2004年   8篇
  2003年   10篇
  2002年   13篇
  2001年   7篇
  2000年   8篇
  1999年   16篇
  1998年   12篇
  1997年   6篇
  1996年   6篇
  1995年   12篇
  1994年   13篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1985年   2篇
  1983年   2篇
  1981年   1篇
  1950年   1篇
排序方式: 共有1287条查询结果,搜索用时 156 毫秒
71.
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.  相似文献   
72.
作为新型的基因组编辑工具,碱基编辑技术结合了CRISPR/Cas系统的定位功能和碱基脱氨酶的编辑功能,可实现特定位点的碱基突变,具有不产生双链DNA断裂,无需外源模板且不依赖染色体DNA同源重组的优势.目前,研究者们已在重要的工业生产菌株谷氨酸棒杆菌(Corynebacterium glutamicum)中开发了多种碱...  相似文献   
73.
New CRISPR-based genome editing technologies are developed to continually drive advances in life sciences, which, however, are predominantly derived from systems of Type II CRISPR-Cas9 and Type V CRISPR-Cas12a for eukaryotes. Here we report a novel CRISPR-n(nickase)Cas3 genome editing tool established upon a Type I-F system. We demonstrate that nCas3 variants can be created by alanine-substituting any catalytic residue of the Cas3 helicase domain. While nCas3 overproduction via plasmid shows severe cytotoxicity, an in situ nCas3 introduces targeted double-strand breaks, facilitating genome editing without visible cell killing. By harnessing this CRISPR-nCas3 in situ gene insertion, nucleotide substitution and deletion of genes or genomic DNA stretches can be consistently accomplished with near-100% efficiencies, including simultaneous removal of two large genomic fragments. Our work describes the first establishment of a CRISPR-nCas3-based genome editing technology, thereby offering a simple, yet useful approach to convert the naturally most abundantly occurring Type I systems into advanced genome editing tools to facilitate high-throughput prokaryotic engineering.  相似文献   
74.
编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长   总被引:1,自引:0,他引:1  
肌生长抑制素(myostatin,MSTN)是转化生长因子 β(transforming growth factor-β,TGF-β)家族成员之一,是一种肌肉生长抑制因子.解除MSTN的生长抑制功能是提高畜禽肌肉产量的一种有效途径.TGF-β 的半胱氨酸节结构基元(cystine knot motif)能够稳定MSTN...  相似文献   
75.
76.
77.
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号