首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   840篇
  免费   19篇
  国内免费   16篇
  2023年   9篇
  2022年   17篇
  2021年   17篇
  2020年   3篇
  2019年   12篇
  2018年   34篇
  2017年   6篇
  2016年   7篇
  2015年   9篇
  2014年   52篇
  2013年   72篇
  2012年   26篇
  2011年   57篇
  2010年   63篇
  2009年   84篇
  2008年   64篇
  2007年   77篇
  2006年   37篇
  2005年   35篇
  2004年   12篇
  2003年   14篇
  2002年   21篇
  2001年   9篇
  2000年   6篇
  1999年   11篇
  1998年   12篇
  1997年   5篇
  1996年   6篇
  1995年   6篇
  1994年   8篇
  1993年   2篇
  1992年   8篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   5篇
  1984年   15篇
  1983年   7篇
  1982年   10篇
  1981年   8篇
  1980年   5篇
  1979年   5篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有875条查询结果,搜索用时 484 毫秒
141.

Background

Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive.

Results

In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol.

Conclusion

Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α.

General significance

To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.  相似文献   
142.
Aurora-A is a centrosome-localized serine/threonine kinase, which plays a critical role in mitotic and meiotic cell division processes. However, the regulation of Aurora-A is still not fully understood. Previously, we have found an intramolecular inhibitory regulation mechanism of Aurora-A: the N-terminal regulatory domain (aa 1–128, Nt) can interact with the C-terminal catalytic domain (aa 129–403, Cd) and inhibit the kinase activity of Aurora-A. In this study, we found that the PreLIM domain of Ajuba, another important activator of Aurora-A, induces the autophosphorylation of the C-terminal kinase domain of Aurora-A, and is phosphorylated by the C-terminal. Moreover, the LIM domain of Ajuba can competitively bind to the N-terminal of Aurora-A, and inhibited the interaction between N-terminal and C-terminal of Aurora A. Taken together, these results suggest a novel mechanism for regulation of Aurora-A by Ajuba.  相似文献   
143.
《Process Biochemistry》2014,49(4):647-654
The keratin-degrading strain Stenotrophomonas maltophilia BBE11-1 secretes two keratinolytic proteases, KerSMD and KerSMF. However, the genes encoding these proteases remain unknown. Here, we have isolated these two genes with a modified TAIL-PCR (thermal asymmetric interlaced PCR) method based on the N-terminal amino acid sequences of mature keratinases. These two keratinase genes encode serine proteases with PPC (bacterial pre-peptidase C-terminal) domain, which are successfully expressed with the help of pelB leader in Escherichia coli cells. Recombinant KerSMD (48 kDa) shows a better activity in feather degradation, higher thermostability and substrate specificity than KerSMF (40 kDa). KerSMD has a t1/2 of 90 min at 50 °C and 64 min at 60 °C, and a better tolerance to surfactants SDS and triton X-100. The predicted model of KerSMD helps to explain the phenomenon of auto-catalytic C-terminal propeptide truncation, the special function of PPC domain, and the molecular weight of the C-terminal-processed mature keratinase KerSMD. This work not only provides a new way to overproduce keratinases but also helps to explore keratinases folding mechanism.  相似文献   
144.
In response to amino acid starvation, GCN2 phosphorylation of eIF2 leads to repression of general translation and initiation of gene reprogramming that facilitates adaptation to nutrient stress. GCN2 is a multidomain protein with key regulatory domains that directly monitor uncharged tRNAs which accumulate during nutrient limitation, leading to activation of this eIF2 kinase and translational control. A critical feature of regulation of this stress response kinase is its C-terminal domain (CTD). Here, we present high resolution crystal structures of murine and yeast CTDs, which guide a functional analysis of the mammalian GCN2. Despite low sequence identity, both yeast and mammalian CTDs share a core subunit structure and an unusual interdigitated dimeric form, albeit with significant differences. Disruption of the dimeric form of murine CTD led to loss of translational control by GCN2, suggesting that dimerization is critical for function as is true for yeast GCN2. However, although both CTDs bind single- and double-stranded RNA, murine GCN2 does not appear to stably associate with the ribosome, whereas yeast GCN2 does. This finding suggests that there are key regulatory differences between yeast and mammalian CTDs, which is consistent with structural differences.  相似文献   
145.
Grp94 is a macromolecular chaperone belonging to the hsp90 family and is the most abundant glycoprotein in the endoplasmic reticulum (ER) of mammals. In addition to its essential role in protein folding, Grp94 was proposed to participate in the ER-associated degradation quality control pathway by interacting with the lectin OS-9, a sensor for terminally misfolded proteins. To understand how OS-9 interacts with ER chaperone proteins, we mapped its interaction with Grp94. Glycosylation of the full-length Grp94 protein was essential for OS-9 binding, although deletion of the Grp94 N-terminal domain relieved this requirement suggesting that the effect was allosteric rather than direct. Although yeast OS-9 is composed of a well-established N-terminal mannose recognition homology lectin domain and a C-terminal dimerization domain, we find that the C-terminal domain of OS-9 in higher eukaryotes contains “mammalian-specific insets” that are specifically recognized by the middle and C-terminal domains of Grp94. Additionally, the Grp94 binding domain in OS-9 was found to be intrinsically disordered. The biochemical analysis of the interacting regions provides insight into the manner by which the two associate and it additionally hints at a plausible biological role for the Grp94/OS-9 complex.  相似文献   
146.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is associated with autosomal dominant hypercholesterolemia, a state of elevated levels of LDL (low-density lipoprotein) cholesterol. Autosomal dominant hypercholesterolemia can result in severe implications such as stroke and coronary heart disease. The inhibition of PCSK9 function by therapeutic antibodies that block interaction of PCSK9 with the epidermal growth factor-like repeat A domain of LDL receptor (LDLR) was shown to successfully lower LDL cholesterol levels in clinical studies. Here we present data on the identification, structural and biophysical characterization and in vitro and in vivo pharmacology of a PCSK9 antibody (mAb1). The X-ray structure shows that mAb1 binds the module 1 of the C-terminal domain (CTD) of PCSK9. It blocks access to an area bearing several naturally occurring gain-of-function and loss-of-function mutations. Although the antibody does not inhibit binding of PCSK9 to epidermal growth factor-like repeat A, it partially reverses PCSK9-induced reduction of the LDLR and LDL cholesterol uptake in a cellular assay. mAb1 is also effective in lowering serum levels of LDL cholesterol in cynomolgus monkeys in vivo. Complete loss of PCSK9 is associated with insufficient liver regeneration and increased risk of hepatitis C infections. Blocking of the CTD is sufficient to partially inhibit PCSK9 function. Antibodies binding the CTD of PCSK9 may thus be advantageous in patients that do not tolerate complete inhibition of PCSK9.  相似文献   
147.
Eukaryotic protein kinases are typically strictly controlled by second messenger binding, protein/protein interactions, dephosphorylations or similar processes. None of these regulatory mechanisms is known to work for protein kinase CK2 (former name “casein kinase 2”), an acidophilic and constitutively active eukaryotic protein kinase. CK2 predominantly exists as a heterotetrameric holoenzyme composed of two catalytic subunits (CK2α) complexed to a dimer of non-catalytic subunits (CK2β). One model of CK2 regulation was proposed several times independently by theoretical docking of the first CK2 holoenzyme structure. According to this model, the CK2 holoenzyme forms autoinhibitory aggregates correlated with trans-autophosphorylation and driven by the down-regulatory affinity between an acidic loop of CK2β and the positively charged substrate binding region of CK2α from a neighboring CK2 heterotetramer. Circular trimeric aggregates in which one-half of the CK2α chains show the predicted inhibitory proximity between those regions were detected within the crystal packing of the human CK2 holoenzyme. Here, we present further in vitro support of the “regulation-by-aggregation” model by an alternative crystal form in which CK2 tetramers are arranged as approximately linear aggregates coinciding essentially with the early predictions. In this assembly, the substrate binding region of every CK2α chain is blocked by a CK2β acidic loop from a neighboring tetramer. We found these crystals with CK2Andante that contains a CK2β variant mutated in a CK2α-contact helix and described to be responsible for a prolonged circadian rhythm in Drosophila. The increased propensity of CK2Andante to form aggregates with completely blocked active sites may contribute to this phenotype.  相似文献   
148.
We present a structural analysis of a peptide, the sequence of which includes amino acids that show preferences for specific positions near the N- and C-termini in protein helices. This peptide has the sequence ac-YMSEDELKAAEAAFKRHGVP-amide, which includes a strong version of an N-terminal Harper-Rose capping box structure as well as a Gly located close to the C-terminus designed to elucidate its role in C-terminal capping. The sequence of five residues at the middle is inserted to separate effects at the two ends via a helix-stabilizing linker. Application of a simulated annealing procedure using interproton distance constraints derived from 1H NOESY experiments in water reveals the presence of a C-terminal structure in this model. The C-terminus forms a folded back structure in a significant fraction of structures generated by the annealing, in most of which Gly assumes an alpha L conformation. This structure occurs within a highly flexible region of the molecule and hence is occupied only a fraction of the time.  相似文献   
149.
Chemical denaturant sensitivity of the dimeric main protease from severe acute respiratory syndrome (SARS) coronavirus to guanidinium chloride was examined in terms of fluorescence spectroscopy, circular dichroism, analytical ultracentrifuge, and enzyme activity change. The dimeric enzyme dissociated at guanidinium chloride concentration of <0.4 M, at which the enzymatic activity loss showed close correlation with the subunit dissociation. Further increase in guanidinium chloride induced a reversible biphasic unfolding of the enzyme. The unfolding of the C-terminal domain-truncated enzyme, on the other hand, followed a monophasic unfolding curve. Different mutants of the full-length protease (W31 and W207/W218), with tryptophanyl residue(s) mutated to phenylalanine at the C-terminal or N-terminal domain, respectively, were constructed. Unfolding curves of these mutants were monophasic but corresponded to the first and second phases of the protease, respectively. The unfolding intermediate of the protease thus represented a folded C-terminal domain but an unfolded N-terminal domain, which is enzymatically inactive due to loss of regulatory properties. The various enzyme forms were characterized in terms of hydrophobicity and size-and-shape distributions. We provide direct evidence for the functional role of C-terminal domain in stabilization of the catalytic N-terminal domain of SARS coronavirus main protease.  相似文献   
150.
The Uup protein belongs to a subfamily of soluble ATP-binding cassette (ABC) ATPases that have been implicated in several processes different from transmembrane transport of molecules, such as transposon precise excision. We have demonstrated previously that Escherichia coli Uup is able to bind DNA. DNA binding capacity is lowered in a truncated Uup protein lacking its C-terminal domain (CTD), suggesting a contribution of CTD to DNA binding. In the present study, we characterize the role of CTD in the function of Uup, on its overall stability and in DNA binding. To this end, we expressed and purified isolated CTD and we investigated the structural and functional role of this domain. The results underline that CTD is essential for the function of Uup, is stable and able to fold up autonomously. We compared the DNA binding activities of three versions of the protein (Uup, UupΔCTD and CTD) by an electrophoretic mobility shift assay. CTD is able to bind DNA although less efficiently than intact Uup and UupΔCTD. These observations suggest that CTD is an essential domain that contributes directly to the DNA binding ability of Uup.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号