首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   840篇
  免费   19篇
  国内免费   16篇
  2023年   9篇
  2022年   17篇
  2021年   17篇
  2020年   3篇
  2019年   12篇
  2018年   34篇
  2017年   6篇
  2016年   7篇
  2015年   9篇
  2014年   52篇
  2013年   72篇
  2012年   26篇
  2011年   57篇
  2010年   63篇
  2009年   84篇
  2008年   64篇
  2007年   77篇
  2006年   37篇
  2005年   35篇
  2004年   12篇
  2003年   14篇
  2002年   21篇
  2001年   9篇
  2000年   6篇
  1999年   11篇
  1998年   12篇
  1997年   5篇
  1996年   6篇
  1995年   6篇
  1994年   8篇
  1993年   2篇
  1992年   8篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   5篇
  1984年   15篇
  1983年   7篇
  1982年   10篇
  1981年   8篇
  1980年   5篇
  1979年   5篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有875条查询结果,搜索用时 46 毫秒
101.
The rate of degradation of cholecystokinin octapeptide, related fragments and analogs by human and rat plasma was investigated, using high pressure liquid chromatography for the separation and identification of the degradation products.CCK tetrapeptide showed a half-life of 13 min in human plasma while its cleavage in rat plasma occurred at a very high rate (half-life of less than 1 min).The kinetics of disappearance of both sulphated and unsulphated CCK-8 indicated more than a single rate of degradation; the faster degrading system showed a half-life of 18 min for unsulphated CCK-8 and of 50 min for the sulphated peptide in human plasma as compared respectively with 5 and 17 min in rat plasma. The cleavage of CCK-8 was inhibited by bestatin and puromycin, suggesting that aminopeptidases play a major role in the breakdown of this peptide.CCK-9 analogs were rapidly converted into their corresponding octapeptides (half-life of 2.7 min in human plasma). This conversion was inhibited by puromycin and bestatin, suggesting the participation of aminopeptidase(s) probably specific for basic amino acids.CCK decapeptide exhibited a greater stability than the nonapeptides (half-life of 30 and 45 min in human and rat plasma respectively) and also gave rise to CCK-8 as degradation product. This cleavage was not affected by aminopeptidase inhibitors but was decreased by aprotinin (Trasylol®), suggesting that trypsin-like and/or kallikrein-like enzyme(s) were involved in the plasma metabolism of this peptide.  相似文献   
102.
103.
104.
Cellular biomolecular complexes including protein–protein, protein–RNA, and protein–DNA interactions regulate and execute most biological functions. In particular in brain, protein–protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell–cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte–neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.  相似文献   
105.
The E. coli ribosomal proteins L12 and its N-acetylated form L7 were cleaved into an N-terminal and C-terminal fragment of roughly comparable size. The selective cleavage at the lone arginine residue was accomplished by trypsin treatment of the citraconylated proteins, followed by removal of the citraconyl moieties. These fragments, both separately and in combination, were incapable of reconstituting elongation factor G (EF-G) dependent GTPase of CsCl ribosomal cores supplemented with L10. However, incubation of cores containing L10 with the N-terminal fragment prevented the reconstitution of GTPase activity by intact L7/L12. No inhibition was observed when CsCl cores lacking L10 were incubated with the N-terminal fragment followed by addition of a preincubated mixture of L7/L12 and L10. The results indicate that the N-terminal part of L7/L12 is responsible for its ability to bind to 50S ribosomes and that L7/L12 together with L10 form a protein cluster on the ribosome.  相似文献   
106.
Synthetic part sequences of human pituitary growth hormone (hGH 176–191 and hGH 177–191) corresponding to residues 176–191 or 177–191 of the hormone have been tested for their effects on glycogen and pyruvate metabolism in the rat, both in vivo and in vitro. When injected, the peptides caused transient increases in blood glucose and lactate, while decreasing the activity ratio of glycogen synthase in muscle, adipose tissue and liver and of pyruvate dehydrogenase in muscle and adipose tissue, but not in liver. These decreases were associated with the conversion of the enzymes from their active to their inactive forms, since the peptides did not affect the total amount of either the synthase or the dehydrogenase. The time course of the effect on the enzymes was similar to that for the effect on blood metabolites, and responses for synthase were produced over the range 0.07–7 nmols hGH 177–191/kg body weight. Phosphorylase activity was not affected by the peptides, nor was the capacity to dispose of injected L-lactate. Experiments with adipocytes and hepatocytes showed that the peptides also affected glycogen synthase and pyruvate dehydrogenase activities in vitro. The peptides had no effect on the overall rate of gluconeogenesis from lactate by hepatocytes. However, at times corresponding to those at which glycogen synthase was inactivated, the peptides caused increased incorporation of lactate into free glucose and decreased incorporation into glycogen. It was concluded that the peptides acted directly on their target tissues, and that the observed hyperlactataemia was the result of the inactivation of pyruvate dehydrogenase. The addition lactate increased the flux through the gluconeogenic pathway, and appeared as glucose because the peptide also inactivated glycogen synthase. Thus, the hyperglycaemia produced by hGH 177–199 and related peptides is explicable in terms of a modified Cori Cycle.  相似文献   
107.
We investigated the evolutionary conservation of polyglutamine binding protein-1 (PQBP-1) among Vertebrata. PQBP-1s were highly conserved and shared the same domain features including a WW domain, a polar amino acid rich domain (PRD), a nuclear localization signal (NLS), and a C-terminal domain (CTD) among Eutheria, but not always among Vertebrata. PQBP-1s of Vertebrata contained a variable region in the middle portion corresponding to the position of PRD. The full form of PRD including both 7aa and DR/ER repeats was specific to Eutheria. PRD of non-eutherian Amniota was minimal. Amphibia had no PRD. The DR/ER repeat was solo in fishes. Agnatha PRD was also rich in polar amino acids, but contained no repetitive sequence. We investigated 3 polyQ-containing proteins known to interact with PQBP-1: BRN-2, Huntingtin, and ATAXIN-1, and showed a diverse nature of protein-protein interaction in Vertebrata. There appears to be no interaction between PQBP-1 and BRN-2, Huntingtin, or ATAXIN-1 in Amphibia, while the interaction between PQBP-1 and BRN-2 is expected to be conserved among Mammalia, and the interaction between PQBP-1 and Huntingtin or ATAXIN-1 depends on the lineage in Eutheria.  相似文献   
108.
Summary This paper describes a practical new use of 3-mercaptopropionic acid as a highly versatile multidetachable linker for solid-phase synthesis. Our approach is based on the stability of the alkylthioester functionality to optimized Boc-SPPS protocols and HF treatment, as well as on the mild activation of the thioester functionality toward nucleophilic or reductive displacement. This allows several C-terminal modifications to be introduced into a synthetic molecule during the cleavage step. We have shown that unprotected peptides can be efficiently cleaved from a propyl thioester-polyethylene glycol-poly-(N,N-dimethylacrylamide) copolymer resin using a great variety of nucleophiles to give the corresponding C-terminally modified peptides (esters, thioesters, carboxylic acids, thioacids, amides, hydroxamic acids, hydrazides, alcohols). The nucleophilic cleavage reaction is both rapid and exceptionally clean in all the cases tested. Abbreviations: HBTU,N-[(1H-benzotriazol-1-yl)(dimethylamino)methylene]-N-methylmethanaminium hexafluorophosphateN-oxide); DIEA,N,N-diisopropylethylamine; DMF,N,N-dimethyl formamide; ES-MS, electrospray mass spectrometry; FAB-MS, fast atom bombardment mass spectrometry; HMBA, hydroxymethylbenzoic acid; HPLC, high performance liquid chromatography; PBS: phosphate buffer saline; PEGA, polyethylene glycolpoly-(N,N-dimethylacrylamide); TFA, trifluoroacetic acid; SPPS, solid-phase peptide synthesis. Standard IUPAC single and triple letter codes for amino acids are used throughout  相似文献   
109.
The influence of enzyme deactivation on substrate conversion in different reactor types is examined. The influence of inter- and intra-particle diffusion on deactivation and on effectiveness factor is analyzed. Optimum temperature operations criterion and policies are presented for reactors with deactivating catalysts. Appropriate examples are provided to highlight the different concepts presented.  相似文献   
110.
One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer-membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4/myeloid differentiation factor-2 complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, mass spectrometry-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号