首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15638篇
  免费   855篇
  国内免费   891篇
  17384篇
  2023年   152篇
  2022年   248篇
  2021年   286篇
  2020年   311篇
  2019年   390篇
  2018年   414篇
  2017年   341篇
  2016年   355篇
  2015年   398篇
  2014年   872篇
  2013年   1055篇
  2012年   772篇
  2011年   917篇
  2010年   678篇
  2009年   749篇
  2008年   856篇
  2007年   870篇
  2006年   713篇
  2005年   672篇
  2004年   590篇
  2003年   600篇
  2002年   499篇
  2001年   337篇
  2000年   331篇
  1999年   353篇
  1998年   358篇
  1997年   294篇
  1996年   259篇
  1995年   262篇
  1994年   248篇
  1993年   221篇
  1992年   193篇
  1991年   167篇
  1990年   134篇
  1989年   149篇
  1988年   96篇
  1987年   109篇
  1986年   81篇
  1985年   115篇
  1984年   161篇
  1983年   108篇
  1982年   107篇
  1981年   114篇
  1980年   80篇
  1979年   78篇
  1978年   65篇
  1977年   36篇
  1976年   46篇
  1975年   31篇
  1974年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Isopeptidases are essential regulators of protein ubiquitination and sumoylation. However, only two families of SUMO isopeptidases are at present known. Here, we report an activity‐based search with the suicide inhibitor haemagglutinin (HA)‐SUMO‐vinylmethylester that led to the identification of a surprising new SUMO protease, ubiquitin‐specific protease‐like 1 (USPL1). Indeed, USPL1 neither binds nor cleaves ubiquitin, but is a potent SUMO isopeptidase both in vitro and in cells. C13orf22l—an essential but distant zebrafish homologue of USPL1—also acts on SUMO, indicating functional conservation. We have identified invariant USPL1 residues required for SUMO binding and cleavage. USPL1 is a low‐abundance protein that colocalizes with coilin in Cajal bodies. Its depletion does not affect global sumoylation, but causes striking coilin mislocalization and impairs cell proliferation, functions that are not dependent on USPL1 catalytic activity. Thus, USPL1 represents a third type of SUMO protease, with essential functions in Cajal body biology.  相似文献   
82.
The human cardiac troponin I (hcTnI) mutation R145W has been associated with restrictive cardiomyopathy. In this study, simultaneous measurements of ATPase activity and force in skinned papillary fibers from hcTnI R145W transgenic mice (Tg-R145W) were explored. Tg-R145W fibers showed an ∼ 13-16% increase in maximal Ca2+-activated force and ATPase activity compared to hcTnI wild-type transgenic mice. The force-generating cross-bridge turnover rate (g) and the energy cost (ATPase/force) were the same in all groups of fibers. Also, the Tg-R145W fibers showed a large increase in the Ca2+ sensitivity of both force development and ATPase. In intact fibers, the mutation caused prolonged force and intracellular [Ca2+] transients and increased time to peak force. Analysis of force and Ca2+ transients showed that there was a 40% increase in peak force in Tg-R145W muscles, which was likely due to the increased Ca2+ transient duration. The above cited results suggest that: (1) there would be an increase in resistance to ventricular filling during diastole resulting from the prolonged force and Ca2+ transients that would result in a decrease in ventricular filling (diastolic dysfunction); and (2) there would be a large (approximately 53%) increase in force during systole, which may help to partly compensate for diastolic dysfunction. These functional results help to explain the mechanisms by which these mutations give rise to a restrictive phenotype.  相似文献   
83.
The enzymatic oxidation of Cephalosporin C (CEPHC) was catalyzed by D-aminoacid oxidase, from the red yeast Trigonopsis variabilis, immobilized on Duolite A365. The study was performed in two different three phase bioreactors, gas-liquid-solid (immobilized enzyme): the fluidized-bed batch reactor, fed continuously with oxygen and discontinuously with CEPHC, and the UF-membrane reactor continuously fed with both substrates. Only the first reactor allowed significant product yield (>70%) while the second was a very useful tool for laboratory investigation of both bioconversion kinetics and enzyme stability.

Optimum reaction temperature was 15d`C for the control of CEPHC spontaneous degradation (roughly 15% in 30 h), and enzyme deactivation (half-life greater than 30 h). Immobilization improved (one order of magnitude longer half-life) enzyme resistance to mechanical stresses induced by liquid stirring and gas bubbling. Roughly 0.04g of CEPHC was adsorbed per gram of enzyme carrier. The limiting step in oxygen transfer was the gas to liquid transport. In order to attain kinetic control of the bioconversion the mildest conditions were atmospheric gas pressure and oxygen flow rate equal to 2 × 10 2NmL/s per mL of liquid phase.  相似文献   
84.
The complement C3a anaphylatoxin is a major molecular mediator of innate immunity. It is a potent activator of mast cells, basophils and eosinophils and causes smooth muscle contraction. Structurally, C3a is a relatively small protein (77 amino acids) comprising a N-terminal domain connected by 3 native disulfide bonds and a helical C-terminal segment. The structural stability of C3a has been investigated here using three different methods: Disulfide scrambling; Differential CD spectroscopy; and Reductive unfolding. Two uncommon features regarding the stability of C3a and the structure of denatured C3a have been observed in this study. (a) There is an unusual disconnection between the conformational stability of C3a and the covalent stability of its three native disulfide bonds that is not seen with other disulfide proteins. As measured by both methods of disulfide scrambling and differential CD spectroscopy, the native C3a exhibits a global conformational stability that is comparable to numerous proteins with similar size and disulfide content, all with mid-point denaturation of [GdmCl]1/2 at 3.4-5 M. These proteins include hirudin, tick anticoagulant protein and leech carboxypeptidase inhibitor. However, the native disulfide bonds of C3a is 150-1000 fold less stable than those proteins as evaluated by the method of reductive unfolding. The 3 native disulfide bonds of C3a can be collectively and quantitatively reduced with as low as 1 mM of dithiothreitol within 5 min. The fragility of the native disulfide bonds of C3a has not yet been observed with other native disulfide proteins. (b) Using the method of disulfide scrambling, denatured C3a was shown to consist of diverse isomers adopting varied extent of unfolding. Among them, the most extensively unfolded isomer of denatured C3a is found to assume beads-form disulfide pattern, comprising Cys36-Cys49 and two disulfide bonds formed by two pair of consecutive cysteines, Cys22-Cys23 and Cys56-Cys57, a unique disulfide structure of polypeptide that has not been documented previously.  相似文献   
85.
Physiological girdling of pine trees via phloem chilling: proof of concept   总被引:2,自引:0,他引:2  
Quantifying below-ground carbon (C) allocation is particularly difficult as methods usually disturb the root-mycorrhizal-soil continuum. We reduced C allocation below ground of loblolly pine trees by: (1) physically girdling trees and (2) physiologically girdling pine trees by chilling the phloem. Chilling reduced cambium temperatures by approximately 18 degrees C. Both methods rapidly reduced soil CO2 efflux, and after approximately 10 days decreased net photosynthesis (P(n)), the latter indicating feedback inhibition. Chilling decreased soil-soluble C, indicating that decreased soil CO2 efflux may have been mediated by a decrease in root C exudation that was rapidly respired by microbes. These effects were only observed in late summer/early autumn when above-ground growth was minimal, and not in the spring when above-ground growth was rapid. All of the effects were rapidly reversed when chilling was ceased. In fertilized plots, both chilling and physical girdling methods reduced soil CO2 efflux by approximately 8%. Physical girdling reduced soil CO2 efflux by 26% in non-fertilized plots. This work demonstrates that phloem chilling provides a non-destructive alternative to reducing the movement of recent photosynthate below the point of chilling to estimate C allocation below ground on large trees.  相似文献   
86.
非蛋白质氨基酸在抗癌、抗菌、抗结核、抗坏血病等方面有着重要的作用。本文主要对铜藻中的游离氨基酸进行检测分析和部分分离纯化及结构鉴定方面的研究,为更好的开发利用这些天然产物提供技术支持。采用离子交换树脂层析法分离铜藻粗提液中的游离氨基酸,收集3 mol/L的氨水洗脱液,用PITC-HPLC柱前衍生反相高效液相色谱法对其进行检测分析,结果显示粗提液中除含有多种组成蛋白质的氨基酸外还有3种未知组分,且含量较高的常见蛋白质氨基酸为丙氨酸、脯氨酸、缬氨酸。采用半制备高效液相色谱系统制备分离了其中一种未知组分的衍生物MWZ2,经真空冷冻干燥后为略黄固体粉末,结合核磁共振波谱、高分辨质谱、红外光谱数据,最终鉴定MWZ2去掉已知取代基团PITC后的成分为β-丙氨酸,分子式为C3H7NO2,分子量为89.09。  相似文献   
87.
The small subunit of ribulose-bisphosphate carboxylase (Rubisco), encoded by rbcS, is essential for photosynthesis in both C3 and C4 plants, even though the cell specificity of rbcS expression is different between C3 and C4 plants. The C3 rbcS is specifically expressed in mesophyll cells, while the C4 rbcS is expressed in bundle sheath cells, and not mesophyll cells. Two chimeric genes were constructed consisting of the structural gene encoding -glucuronidase (GUS) controlled by the two promoters from maize (C4) and rice (C3) rbcS genes. These constructs were introduced into a C4 plant, maize. Both chimeric genes were specifically expressed in photosynthetic organs, such as leaf blade, but not in non-photosynthetic organs. The expressions of the genes were also regulated by light. However, the rice promoter drove the GUS activity mainly in mesophyll cells and relatively low in bundle sheath cells, while the maize rbcS promoter induced the activity specifically in bundle sheath cells. These results suggest that the rice promoter contains some cis-acting elements responding in an organ-pecific and light-inducible regulation manner in maize but does not contain element(s) for bundle sheath cell-specific expression, while the maize promoter does contain such element(s). Based on this result, we discuss the similarities and differences between the rice (C3) and maize (C4) rbcS promoter in terms of the evolution of the C4 photosynthetic gene.  相似文献   
88.
The tight junction (TJ) is an essential component of the differentiated epithelial cell required for polarised transport and intercellular integrity and signalling. Whilst much can be learnt about how the TJ is constructed and maintained and how it functions using a wide range of cellular systems, the mechanisms of TJ biogenesis within developmental models must be studied to gain insight into this process as an integral part of epithelial differentiation. Here, we review TJ biogenesis in the early mammalian embryo, mainly considering the mouse but also including the human and other species, and, briefly, within the amphibian embryo. We relate TJ biogenesis to inherent mechanisms of cell differentiation and biosynthesis occurring during cleavage of the egg and the formation of the first epithelium. We also evaluate a wide range of exogenous cues, including cell-cell interactions, protein kinase C signalling, gap junctional communication, Na+/K+-ATPase and cellular energy status, that may contribute to TJ biogenesis in the embryo and how these may shape the pattern of early morphogenesis.  相似文献   
89.
The wet heathland communities of the Ericetum tetralicis and the Cirsio-Molinietum have declined in the Netherlands due to acidification, eutrophication and lowering of the water table. To investigate the prospects of restoration of both communities, the effects of sod cutting and hydrological measures on vegetation and soil chemistry were studied in two nature reserves where these plant communities occurred decades ago. The combination of sod cutting and hydrological measures has restored several rare, groundwater dependent heathland communities. Sod cutting has restored the Ericetum tetralicis, but not the Cirsio-Molinietum. This might be due to the absence of viable seeds of characteristic species of the Cirsio-Molinietum and/or the absence of optimal site conditions, especially high phosphorus concentrations in the top soil. The high phosphorus concentrations might be a consequence of high mineralization rates and/or prolonged inundation with iron-poor water and the decreased flux of iron-rich groundwater into the topsoil. Restoration of the Cirsio-Molinietum only seems possible when sod cutting is carried out together with hydrological measures that counter prolonged inundation and reinforce the discharge of base and iron-rich groundwater.  相似文献   
90.
Phosphorylation at glutamate receptor subunit 1(GluR1) Ser845 residue has been widely accepted to involve in GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking, but the in vivo evidence has not yet been established. One of the main obstacles is the lack of effective methodologies to selectively target phosphorylation at single amino acid residue. In this study, the Escherichia  coli -expressed glutathione- S -transferase-tagged intracellular carboxyl-terminal domain of GluR1 (cGluR1) was phosphorylated by protein kinase A for in vitro selection. We have successfully selected aptamers which effectively bind to phospho-Ser845 cGluR1 protein, but without binding to phospho-Ser831 cGluR1 protein. Moreover, pre-binding of the unphospho-cGluR1 protein with these aptamers inhibits protein kinase A-mediated phosphorylation at Ser845 residue. In contrast, the pre-binding of aptamer A2 has no effect on protein kinase C-mediated phosphorylation at Ser831 residue. Importantly, the representative aptamer A2 can effectively bind the mammalian GluR1 that inhibited GluR1/GluR1-containing AMPA receptor trafficking to the cell surface and abrogated forskolin-stimulated phosphorylation at GluR1 Ser845 in both green fluorescent protein–GluR1-transfected human embryonic kidney cells and cultured rat cortical neurons. The strategy to use aptamer to modify single-residue phosphorylation is expected to facilitate evaluation of the potential role of AMPA receptors in various forms of synaptic plasticity including that underlying psychostimulant abuse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号