首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148216篇
  免费   8472篇
  国内免费   10462篇
  167150篇
  2023年   1832篇
  2022年   2903篇
  2021年   3728篇
  2020年   3703篇
  2019年   5105篇
  2018年   4158篇
  2017年   3333篇
  2016年   3734篇
  2015年   5116篇
  2014年   7838篇
  2013年   10468篇
  2012年   6458篇
  2011年   8696篇
  2010年   6512篇
  2009年   7053篇
  2008年   7459篇
  2007年   7647篇
  2006年   6914篇
  2005年   6169篇
  2004年   5405篇
  2003年   4730篇
  2002年   4189篇
  2001年   3123篇
  2000年   2729篇
  1999年   2776篇
  1998年   2578篇
  1997年   2238篇
  1996年   2058篇
  1995年   2216篇
  1994年   2069篇
  1993年   1914篇
  1992年   1823篇
  1991年   1561篇
  1990年   1384篇
  1989年   1299篇
  1988年   1234篇
  1987年   1187篇
  1986年   861篇
  1985年   1357篇
  1984年   1803篇
  1983年   1298篇
  1982年   1684篇
  1981年   1220篇
  1980年   1191篇
  1979年   1111篇
  1978年   691篇
  1977年   548篇
  1976年   464篇
  1975年   341篇
  1973年   354篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Extended producer responsibility (EPR) policies have proven effective at raising consumer awareness, expanding waste collection infrastructure, and shifting costs of end‐of‐life (EOL) management from municipalities to stewardship organizations. Yet, such policies have been less successful in advancing waste management programs that ensure a net environmental benefit. This article analyzes how EPR policies for single‐use batteries in the European Union (EU), Canada, and the United States address the environmental costs and benefits of EOL management. Considering these EPR policies is instructive, because single‐use batteries have high collection costs and are of relatively low economic value for waste processors. Without deliberate planning, the environmental burdens of collecting and recycling such batteries may exceed the benefits. This article considers how EPR policies for single‐use batteries integrate performance requirements such as collection rates, recycling efficiencies, and best available techniques. It argues that for such policies to be effective, they need to be extended to address waste collection practices, the life cycle consequences of EOL management, and the quality of recovered materials. Such strategies are relevant to EPR policies for other products with marginal secondary value, including some textiles, plastics, and other types of electronic waste.  相似文献   
992.
Rechargeable lithium–oxygen batteries (LOBs) are considered to be one of the most promising energy storage systems. However, the use of reactive lithium (Li) metal and the formation of Li dendrites during battery operation would lead to serious safety concerns, especially when flammable liquid electrolytes are utilized. Herein, superior metal–organic framework (MOF) glass-based solid-state electrolytes (SSEs) is developed for stable all-solid-state LOBs (SSLOBs). These non-flammable and boundary-free MOF glass SSEs are capable of suppressing the dendrite growth and exhibiting long-term Li stripping/plating stability, contributing to superior Li+ conductivity (5 × 10−4 S cm−1 at 20 °C), high Li+ transference number (0.86), and good electrochemical stability. It is discovered that discharge product deposition behavior in the solid-solid interface can be well regulated by the ion/electron mixed conducted cathode fabricated with MOF glass SSEs and electronic conductive polymers. As a result, the SSLOBs can be stably recharged for 400 cycles with a low polarization gap and deliver a high capacity of 13552 mAh g−1. The development of this proposed MOF glass displays great application potential in energy storage systems with good safety and high energy density.  相似文献   
993.

Introduction

Deletion or mutation of the gene encoding the cartilage extracellular matrix (ECM) protein matrilin-3 (MATN3) results in the early onset of osteoarthritis (OA), suggesting chondroprotective properties of MATN3. To understand the mechanisms underlying these properties, we determined the effects of MATN3 protein on the expression of several key anabolic and catabolic genes involved in chondrocyte homeostasis, and the dependence of such regulation on the anti-inflammatory cytokine: IL-1 receptor antagonist (IL-1Ra).

Methods

The effects of recombinant human (rh) MATN3 protein were examined in C28/I2 immortalized human chondrocytes, primary human chondrocytes (PHCs), and primary mouse chondrocytes (PMCs). Messenger RNA levels of IL-1Ra, COL2A1, ACAN, MMP-13, and ADAMTS-4 and -5 were determined using real-time RT-PCR. Knocking down IL-1Ra was achieved by siRNA gene silencing. IL-1Ra protein levels were quantified by ELISA and the Bio-Plex Suspension Array System. COL2A1 protein level was quantified using Western blot analysis. Statistic analysis was done using the two-tailed t-test or one-way ANOVA.

Results

rhMATN3 protein induced gene expression of IL-1Ra in C28/I2 cells, PHCs, and PMCs in a dose- and time-dependent manner. Treatment of C28/I2 cells and PHCs with MATN3 protein stimulated gene expression of COL2A1 and ACAN. Conversely, mRNA levels of COL2A1 and ACAN were decreased in MATN3 KO mice. MATN3 protein treatment inhibited IL-1β-induced MMP-13, ADAMTS-4 and ADAMTS-5 in C28/I2 cells and PHCs. Knocking down IL-1Ra abolished the MATN3-mediated stimulation of COL2A1 and ACAN and inhibition of ADAMTS-5, but had no effect on MATN3 inhibition of MMP-13 mRNA.

Conclusion

Our findings point to a novel regulatory role of MATN3 in cartilage homeostasis due to its capacity to induce IL-1Ra, to upregulate gene expression of the major cartilage matrix components, and to downregulate the expression of OA-associated matrix-degrading proteinases in chondrocytes. The chondroprotective properties of endogenous MATN3 depend partly on its induction of IL-1Ra. Our findings raise a possibility to use rhMATN3 protein for anti-inflammatory and chondroprotective therapy.  相似文献   
994.
PD98059 and U0126 are organic compound inhibitors frequently used to block the activity of the MEK-1/2 protein kinase. In the present work, promoter activation analyses of xanthine oxidoreductase (XOR) in epithelial cells uncovered the unexpected opposite effect of these inhibitors on activation of XOR. Activation of an XOR-luciferase fusion gene was studied in stably transfected epithelial cells. The XOR reporter gene was activated by the epidermal growth factors (EGF), prolactin, and dexamethasone and by the acute phase cytokines (APC) IL-1, IL-6, and TNFalpha as previously reported for its native gene, and insulin further stimulated activation induced with acute phase cytokines or growth factors. Activation of the proximal promoter was blocked by inhibitors of the glucocorticoid receptor (GR), p38 MAP kinase, and U0126. Unexpectedly, PD98059 activated the promoter and significantly enhanced expression induced by insulin, APC, or growth factors. Analysis of the XOR upstream DNA and proximal promoter revealed primary roles for the GR and STAT3 in mediating the effects of PD98059 on XOR activation and protein complex formation with the promoter. STAT3 phosphotyrosine-705 was rapidly induced by PD98059, dexamethasone, and insulin. XOR activation by PD98059, dexamethasone, or insulin was superinduced by a constitutively active derivative of STAT3, while a dominant negative derivative of STAT3 blocked the enhancing effect of PD98059 on XOR activation. These data demonstrate a previously unrecognized effect of PD98059 on STAT3 and the GR that could have unanticipated consequences when used to infer the involvement of the MEK-1/2 protein kinase.  相似文献   
995.
A wide range of protein acyl modifications has been identified on enzymes across various metabolic processes; however, the impact of these modifications remains poorly understood. Protein glutarylation is a recently identified modification that can be nonenzymatically driven by glutaryl-CoA. In mammalian systems, this unique metabolite is only produced in the lysine and tryptophan oxidative pathways. To better understand the biology of protein glutarylation, we studied the relationship between enzymes within the lysine/tryptophan catabolic pathways, protein glutarylation, and regulation by the deglutarylating enzyme sirtuin 5 (SIRT5). Here, we identify glutarylation on the lysine oxidation pathway enzyme glutaryl-CoA dehydrogenase (GCDH) and show increased GCDH glutarylation when glutaryl-CoA production is stimulated by lysine catabolism. Our data reveal that glutarylation of GCDH impacts its function, ultimately decreasing lysine oxidation. We also demonstrate the ability of SIRT5 to deglutarylate GCDH, restoring its enzymatic activity. Finally, metabolomic and bioinformatic analyses indicate an expanded role for SIRT5 in regulating amino acid metabolism. Together, these data support a feedback loop model within the lysine/tryptophan oxidation pathway in which glutaryl-CoA is produced, in turn inhibiting GCDH function via glutaryl modification of GCDH lysine residues and can be relieved by SIRT5 deacylation activity.  相似文献   
996.
997.
Mosses have substantial amounts of long chain C20 polyunsaturated fatty acids, such as arachidonic and eicosapentaenoic acid, in addition to the shorter chain C18 α-linolenic and linoleic acids, which are typical substrates of lipoxygenases in flowering plants. To identify the fatty acid substrates used by moss lipoxygenases, eight lipoxygenase genes from Physcomitrella patens were heterologously expressed in Escherichia coli, and then analyzed for lipoxygenase activity using linoleic, α-linolenic and arachidonic acids as substrates. Among the eight moss lipoxygenases, only seven were found to be enzymatically active in vitro, two of which selectively used arachidonic acid as the substrate, while the other five preferred α-linolenic acid. Based on enzyme assays using a Clark-type oxygen electrode, all of the active lipoxygenases had an optimum pH at 7.0, except for one with highest activity at pH 5.0. HPLC analyses indicated that the two arachidonic acid lipoxygenases form (12S)-hydroperoxy eicosatetraenoic acid as the main product, while the other five lipoxygenases produce mainly (13S)-hydroperoxy octadecatrienoic acid from α-linolenic acid. These results suggest that mosses may have both C20 and C18 based oxylipin pathways.  相似文献   
998.
To evaluate the usefulness of the Korean Isolate-1 (KI-1) antigen for serodiagnosis of toxoplasmosis, antigen profiles of KI-1 tachyzoites were analyzed in comparison with RH tachyzoites by SDS-PAGE and immunoblotting. ELISA was performed on latex agglutination (LA)-positive and negative serum samples using KI-1 and RH antigens. Immunoblotting of the KI-1 antigen showed multiple antigen bands with molecular sizes of 22-105 kDa. Among them, 1 and 6 common bands were noted against a KI-1-infected and a RH-infected human serum, respectively, which represented differences in antigenic profiles between KI-1 and RH tachyzoites. However, all 9 LA-positive human sera were found positive by ELISA, and all 12 LA-negative sera were negative by ELISA; the correlation between the ELISA titers and LA titers was high (r = 0.749). Our results suggest that tachyzoites of KI-1 may be useful for serodiagnosis of human toxoplasmosis.  相似文献   
999.
Gram-negative rod shaped bacterium Myxococcus xanthus DK1622 produces a smooth-type LPS. The structure of the polysaccharide O-chain and the core-lipid A region of the LPS has been determined by chemical and spectroscopic methods. The O-chain was built up of disaccharide repeating units having the following structure: -->6)-alpha-D-Glcp-(1-->4)-alpha-D-GalpNAc6oMe*-(1--> with partially methylated GalNAc residue. The core region consisted of a phosphorylated hexasaccharide, containing one Kdo residue, unsubstituted at O-4, and no heptose residues. The lipid A component consisted of beta-GlcN-(1-->6)-alpha-GlcN1P disaccharide, N-acylated with 13-methyl-C14-3OH (iso-C15-3OH), C16-3OH, and 15-methyl-C16-3OH (iso-C17-3OH) acids. The lipid portion contained O-linked iso-C16 acid.  相似文献   
1000.
Vascular smooth muscle cell (VSMC) proliferation is a hallmark of neointimal hyperplasia (NIH) in atherosclerosis and restenosis post-balloon angioplasty and stent insertion. Although numerous cytotoxic and cytostatic therapeutics have been developed to reduce NIH, it is improbable that a multifactorial disease can be successfully treated by focusing on a preconceived hypothesis. We, therefore, aimed to identify key molecules involved in NIH via a hypothesis-free approach. We analyzed four datasets (GSE28829, GSE43292, GSE100927, and GSE120521), evaluated differentially expressed genes (DEGs) in wire-injured femoral arteries of mice, and determined their association with VSMC proliferation in vitro. Moreover, we performed RNA sequencing on platelet-derived growth factor (PDGF)-stimulated human VSMCs (hVSMCs) post-phosphoenolpyruvate carboxykinase 2 (PCK2) knockdown and investigated pathways associated with PCK2. Finally, we assessed NIH formation in Pck2 knockout (KO) mice by wire injury and identified PCK2 expression in human femoral artery atheroma. Among six DEGs, only PCK2 and RGS1 showed identical expression patterns between wire-injured femoral arteries of mice and gene expression datasets. PDGF-induced VSMC proliferation was attenuated when hVSMCs were transfected with PCK2 siRNA. RNA sequencing of PCK2 siRNA-treated hVSMCs revealed the involvement of the Akt-FoxO-PCK2 pathway in VSMC proliferation via Akt2, Akt3, FoxO1, and FoxO3. Additionally, NIH was attenuated in the wire-injured femoral artery of Pck2-KO mice and PCK2 was expressed in human femoral atheroma. PCK2 regulates VSMC proliferation in response to vascular injury via the Akt-FoxO-PCK2 pathway. Targeting PCK2, a downstream signaling mediator of VSMC proliferation, may be a novel therapeutic approach to modulate VSMC proliferation in atherosclerosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号