首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   14篇
  国内免费   7篇
  171篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   6篇
  2018年   1篇
  2017年   8篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   5篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2009年   10篇
  2008年   8篇
  2007年   15篇
  2006年   14篇
  2005年   8篇
  2004年   6篇
  2003年   8篇
  2002年   6篇
  2001年   1篇
  2000年   4篇
  1999年   11篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   6篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1984年   4篇
排序方式: 共有171条查询结果,搜索用时 0 毫秒
71.
72.
Current invasion ecology theory predicts that disturbance will stimulate invasion by exotic plant species. Cheatgrass or Downy brome (Bromus tectorum) was surveyed in three sites near Florence, Colorado, U.S.A., immediately following Tamarisk or Saltcedar (Tamarix spp.) control and restoration activities that caused disturbance. Despite predictions to the contrary, neither mowing with heavy machinery nor tilling for seedbed preparation stimulated invasion, with a trend for the opposite pattern such that highest percent cover of B. tectorum was observed in the least disturbed transects. Aerial application of imazapyr for Tamarix spp. control caused mortality of nearly all B. tectorum and other understory plant species in all sites. Mechanical control of Tamarix spp. will not necessarily result in increased abundance of invasive species already present, possibly due to the effects of mulch usually left on‐site. Imazapyr will control B. tectorum and other herbaceous understory species when applied aerially for Tamarix spp. control. These results are encouraging for managers of riparian systems who may fear that control of woody invasives will stimulate herbaceous invasions.  相似文献   
73.
Woody, evergreen shrublands are the archetypal community in mediterranean-type ecosystems, and these communities are profoundly changed when they undergo vegetation-type conversion (VTC) to become annual, herb-dominated communities. Recently, VTC has occurred throughout southern California chaparral shrublands, likely with changes in important ecosystem functions. The mechanisms that lead to VTC and subsequent changes to ecosystem processes are important to understand as they have regional and global implications for ecosystem services, climate change, land management, and policy. The main drivers of VTC are altered fire regimes, aridity, and anthropogenic disturbance. Some changes to ecosystem function are certain to occur with VTC, but their magnitudes are unclear, whereas other changes are unpredictable. I present two hypotheses: (1) VTC leads to warming that creates a positive feedback promoting additional VTC, and (2) altered nitrogen dynamics create negative feedbacks and promote an alternative stable state in which communities are dominated by herbs. The patterns described for California are mostly relevant to the other mediterranean-type shrublands of the globe, which are biodiversity hotspots and threatened by VTC. This review examines the extent and causes of VTC, ecosystem effects, and future research priorities.  相似文献   
74.
The seed progeny of smooth brome (Bromus inermis Leyss.) were evaluated over a year for their viability, mutation rate, resistance to radiation and antioxidant status in response to chronic radiation exposure. Bromus inermis is found in the Eastern Ural Radioactive Trace (EURT) area and the background territories (surrounding territories that are used as controls as they only have natural background radiation). The absorbed doses by smooth brome from the EURT area were 1.5–18.5 times higher compared to background locations for parent plants and 1.1–11.6 times higher for the seed embryos. There are predictable and asynchronous changes in the survival of shoots and root growth rate between background populations and chronically irradiated samples. The provocative dose of 250 Gy is more damaging in the winter months, than in the summer and autumn. The frequency of anomalies in shoots varied in different months, with the biggest rate of mutation recorded in physiologically harsher period (autumn–winter). There is no correlation between resulting survival rate of shoots and their resistance to radiation. The intense activity of the antioxidant systems (estimated by the content of low molecular weight antioxidants) allowed faster growth of the shoots and reduced the number of abnormalities seen in development.  相似文献   
75.
Ustilago bullata is frequently encountered on the exotic winter annual grass Bromus tectorum in western North America. To evaluate the biocontrol potential of this seedling-infecting pathogen, we examined the effect of temperature on the infection process. Teliospore germination rate increased linearly with temperature from 2.5 to 25°C, with significant among-population differences. It generally matched or exceeded host seed germination rate over the range 10-25°C, but lagged behind at lower temperatures. Inoculation trials demonstrated that the pathogen can achieve high disease incidence when temperatures during infection range 20-30°C. Disease incidence was drastically reduced at 2.5°C. Pathogen populations differed in their ability to infect at different temperatures, but none could infect in the cold. This may limit the use of this organism for biocontrol of B. tectorum to habitats with reliable autumn seedling emergence, because cold temperatures are likely to limit infection of later-emerging seedling cohorts.  相似文献   
76.
Revitalization of degraded landscapes may provide sinks for rising atmospheric CO2, especially in reconstructed prairies where substantial belowground productivity is coupled with large soil organic carbon (SOC) deficits after many decades of cultivation. The restoration process also provides opportunities to study the often‐elusive factors that regulate soil processes. Although the precise mechanisms that govern the rate of SOC accrual are unclear, factors such as soil moisture or vegetation type may influence the net accrual rate by affecting the balance between organic matter inputs and decomposition. A resampling approach was used to assess the control that soil moisture and plant community type each exert on SOC and total nitrogen (TN) accumulation in restored grasslands. Five plots that varied in drainage were sampled at least four times over two decades to assess SOC, TN, and C4‐ and C3‐derived C. We found that higher long‐term soil moisture, characterized by low soil magnetic susceptibility, promoted SOC and TN accrual, with twice the SOC and three times the TN gain in seasonally saturated prairies compared with mesic prairies. Vegetation also influenced SOC and TN recovery, as accrual was faster in the prairies compared with C3‐only grassland, and C4‐derived C accrual correlated strongly to total SOC accrual but C3‐C did not. High SOC accumulation at the surface (0–10 cm) combined with losses at depth (10–20 cm) suggested these soils are recovering the highly stratified profiles typical of remnant prairies. Our results suggest that local hydrology and plant community are critical drivers of SOC and TN recovery in restored grasslands. Because these factors and the way they affect SOC are susceptible to modification by climate change, we contend that predictions of the C‐sequestration performance of restored grasslands must account for projected climatic changes on both soil moisture and the seasonal productivity of C4 and C3 plants.  相似文献   
77.
78.
Exotic plant invasions alter ecosystem properties and threaten ecosystem functions globally. Interannual climate variability (ICV) influences both plant community composition (PCC) and soil properties, and interactions between ICV and PCC may influence nitrogen (N) and carbon (C) pools. We asked how ICV and non-native annual grass invasion covary to influence soil and plant N and C in a semiarid shrubland undergoing widespread ecosystem transformation due to invasions and altered fire regimes. We sampled four progressive stages of annual grass invasion at 20 sites across a large (25,000 km2) landscape for plant community composition, plant tissue N and C, and soil total N and C in 2013 and 2016, which followed 2 years of dry and wet conditions, respectively. Multivariate analyses and ANOVAs showed that in invasion stages where native shrub and perennial grass and forb communities were replaced by annual grass-dominated communities, the ecosystem lost more soil N and C in wet years. Path analysis showed that high water availability led to higher herbaceous cover in all invasion stages. In stages with native shrubs and perennial grasses, higher perennial grass cover was associated with increased soil C and N, while in annual-dominated stages, higher annual grass cover was associated with losses of soil C and N. Also, soil total C and C:N ratios were more homogeneous in annual-dominated invasion stages as indicated by within-site standard deviations. Loss of native shrubs and perennial grasses and forbs coupled with annual grass invasion may lead to long-term declines in soil N and C and hamper restoration efforts. Restoration strategies that use innovative techniques and novel species to address increasing temperatures and ICV and emphasize maintaining plant community structure—shrubs, grasses, and forbs—will allow sagebrush ecosystems to maintain C sequestration, soil fertility, and soil heterogeneity.  相似文献   
79.
80.
Anthropogenic nitrogen (N) deposition causes shifts in vegetation types as well as species composition of arbuscular mycorrhizal (AM) fungi and other soil microorganisms. A greenhouse experiment was done to determine whether there are feedbacks between N-altered soil inoculum and growth of a dominant native shrub and an invasive grass species in southern California. The region is experiencing large-scale loss of Artemisia californica shrublands and replacement by invasive annual grasses under N deposition. Artemisia californica and Bromus madritensis ssp. rubens were grown with soil inoculum from experimental plots in a low N deposition site that had (1) N-fertilized and (2) unfertilized soil used for inoculum, as well as (3) high-N soil inoculum from a site exposed to atmospheric N deposition for four decades. All treatments plus a nonmycorrhizal control were given two levels of N fertilizer solution. A. californica biomass was reduced by each of the three inocula compared to uninoculated controls under at least one of the two N fertilizer solutions. The␣inoculum from the N-deposition site caused the greatest growth depressions. By contrast, B.␣madritensis biomass increased with each of the three inocula under at least one, or both, of the N solutions. The different growth responses of the two plant species may be related to the types of AM fungal colonization. B. madritensis was mainly colonized by a fine mycorrhizal endophyte, while A. californica had primarily coarse endophytes. Furthermore, A. californica had a high level of septate, nonmycorrhizal root endophytes, while B. madritensis overall had low levels of these endophytes. The negative biomass response of A. californica seedlings to high N-deposition inoculum may in part explain its decline; a microbially-mediated negative feedback may occur in this system that causes poor␣seedling growth and establishment of A.␣californica in sites subject to N deposition and B. madritensis invasion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号