首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   14篇
  国内免费   7篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   6篇
  2018年   1篇
  2017年   8篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   5篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2009年   10篇
  2008年   8篇
  2007年   15篇
  2006年   14篇
  2005年   8篇
  2004年   6篇
  2003年   8篇
  2002年   6篇
  2001年   1篇
  2000年   4篇
  1999年   11篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   6篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1984年   4篇
排序方式: 共有171条查询结果,搜索用时 218 毫秒
61.
The effects of invasive species on the patch dynamics (establishment, growth, and local extinction) of native species are not well studied, owing to the need for relatively fine-scale data on the distribution of species. Within the prairie pothole region of the United States and Canada, the grass, Bromus inermis (smooth brome) has become established by invading disturbed prairies, and through repeated introductions for soil retention and animal graze. In this study, the impact of smooth brome on the patch dynamics of a dominant native grass species, Spartina pectinata (prairie cordgrass), was assessed using fine-scale (sub-meter) mapping of the distribution of cordgrass and brome in three prairie fragments from 2000 to 2006. Using GIS spatial analyses, we determined that cordgrass patch growth was two times greater in areas not invaded by smooth brome versus areas that were heavily infested with smooth brome. Among sites and time periods, there was a consistent significant negative relationship between the amount of smooth brome surrounding a patch of cordgrass and the growth of that cordgrass patch. The probability of establishment of a new patch of cordgrass averaged 1.3 times higher in areas of low brome coverage (<25%) than areas of high brome coverage (>75%). Conversely, existing cordgrass patches were 7.8 times more likely to go extinct in areas of high than low brome coverage. This is one of only a few field studies to provide evidence of the negative impact of smooth brome on native flora and hopefully will serve as justification for the development of a formal management plan to limit the distribution of this species in tallgrass prairie ecosystems.  相似文献   
62.
Revitalization of degraded landscapes may provide sinks for rising atmospheric CO2, especially in reconstructed prairies where substantial belowground productivity is coupled with large soil organic carbon (SOC) deficits after many decades of cultivation. The restoration process also provides opportunities to study the often‐elusive factors that regulate soil processes. Although the precise mechanisms that govern the rate of SOC accrual are unclear, factors such as soil moisture or vegetation type may influence the net accrual rate by affecting the balance between organic matter inputs and decomposition. A resampling approach was used to assess the control that soil moisture and plant community type each exert on SOC and total nitrogen (TN) accumulation in restored grasslands. Five plots that varied in drainage were sampled at least four times over two decades to assess SOC, TN, and C4‐ and C3‐derived C. We found that higher long‐term soil moisture, characterized by low soil magnetic susceptibility, promoted SOC and TN accrual, with twice the SOC and three times the TN gain in seasonally saturated prairies compared with mesic prairies. Vegetation also influenced SOC and TN recovery, as accrual was faster in the prairies compared with C3‐only grassland, and C4‐derived C accrual correlated strongly to total SOC accrual but C3‐C did not. High SOC accumulation at the surface (0–10 cm) combined with losses at depth (10–20 cm) suggested these soils are recovering the highly stratified profiles typical of remnant prairies. Our results suggest that local hydrology and plant community are critical drivers of SOC and TN recovery in restored grasslands. Because these factors and the way they affect SOC are susceptible to modification by climate change, we contend that predictions of the C‐sequestration performance of restored grasslands must account for projected climatic changes on both soil moisture and the seasonal productivity of C4 and C3 plants.  相似文献   
63.
64.
65.
Question: Predicting the future abundance and distribution of invasive plants requires knowing how they respond to environmental conditions. In arid and semi‐arid ecosystems where water is a limiting resource, environmental conditions and disturbance patterns influence invasions by altering acquisition and utilization of water over space and time. We ask: 1. How do variations in climatic and soil properties influence temporal soil water dynamics? 2. How does this variation affect the establishment of Bromus tectorum (cheatgrass), a cool‐season annual grass that has successfully colonized much of the U.S. Great Basin? Location: Short‐grass Steppe in northeastern Colorado, USA; Arid Lands Ecology reserve in southeastern Washington, USA; and the Patagonian steppe of the Chubut province in Argentina. Methods: We utilized a soil water model to simulate seasonal soil water dynamics in multiple combinations of climatic and soil properties. In addition, we utilized a gap dynamics model to simulate the impact of disturbance regime and seed availability on competition between B. tectorum and native plants. Results: Our results suggest that climate is very important, but that soil properties do not significantly influence the probability of observing conditions suitable for B. tectorum establishment. Results of the plant competition model indicate that frequent disturbance causes more Bromus tectorum in invaded areas and higher seed availability causes faster invasion. Conclusions: These results imply a general framework for understanding Bromus tectorum invasion in which climatic conditions dictate which areas are susceptible to invasion, disturbance regime dictates the severity of invasion and seed availability dictates the speed of invasion.  相似文献   
66.
Perennial grasses are promising candidates for bioenergy crops, but species that can escape cultivation and establish self‐sustaining naturalized populations (feral) may have the potential to become invasive. Fertile Miscanthus × giganteus, known as “PowerCane,” is a new potential biofuel crop. Its parent species are ornamental, non‐native Miscanthus species that establish feral populations and are sometimes invasive in the USA. As a first step toward assessing the potential for “PowerCane” to become invasive, we documented its growth and fecundity relative to one of its parent species (Miscanthus sinensis) in competition with native and invasive grasses in common garden experiments located in Columbus, Ohio and Ames, Iowa, within the targeted range of biofuel cultivation. We conducted a 2‐year experiment to compare growth and reproduction among three Miscanthus biotypes—”PowerCane,” ornamental M. sinensis, and feral M. sinensis—at two locations. Single Miscanthus plants were subjected to competition with a native grass (Panicum virgatum), a weedy grass (Bromus inermis), or no competition. Response variables were aboveground biomass, number of shoots, basal area, and seed set. In Iowa, all Miscanthus plants died after the first winter, which was unusually cold, so no further results are reported from the Iowa site. In Ohio, we found significant differences among biotypes in growth and fecundity, as well as significant effects of competition. Interactions between these treatments were not significant. “PowerCane” performed as well or better than ornamental or feral M. sinensis in vegetative traits, but had much lower seed production, perhaps due to pollen limitation. In general, ornamental M. sinensis performed somewhat better than feral M. sinensis. Our findings suggest that feral populations of “PowerCane” could become established adjacent to biofuel production areas. Fertile Miscanthus × giganteus should be studied further to assess its potential to spread via seed production in large, sexually compatible populations.  相似文献   
67.
68.
69.
Current invasion ecology theory predicts that disturbance will stimulate invasion by exotic plant species. Cheatgrass or Downy brome (Bromus tectorum) was surveyed in three sites near Florence, Colorado, U.S.A., immediately following Tamarisk or Saltcedar (Tamarix spp.) control and restoration activities that caused disturbance. Despite predictions to the contrary, neither mowing with heavy machinery nor tilling for seedbed preparation stimulated invasion, with a trend for the opposite pattern such that highest percent cover of B. tectorum was observed in the least disturbed transects. Aerial application of imazapyr for Tamarix spp. control caused mortality of nearly all B. tectorum and other understory plant species in all sites. Mechanical control of Tamarix spp. will not necessarily result in increased abundance of invasive species already present, possibly due to the effects of mulch usually left on‐site. Imazapyr will control B. tectorum and other herbaceous understory species when applied aerially for Tamarix spp. control. These results are encouraging for managers of riparian systems who may fear that control of woody invasives will stimulate herbaceous invasions.  相似文献   
70.
Exotic plant invasions alter ecosystem properties and threaten ecosystem functions globally. Interannual climate variability (ICV) influences both plant community composition (PCC) and soil properties, and interactions between ICV and PCC may influence nitrogen (N) and carbon (C) pools. We asked how ICV and non-native annual grass invasion covary to influence soil and plant N and C in a semiarid shrubland undergoing widespread ecosystem transformation due to invasions and altered fire regimes. We sampled four progressive stages of annual grass invasion at 20 sites across a large (25,000 km2) landscape for plant community composition, plant tissue N and C, and soil total N and C in 2013 and 2016, which followed 2 years of dry and wet conditions, respectively. Multivariate analyses and ANOVAs showed that in invasion stages where native shrub and perennial grass and forb communities were replaced by annual grass-dominated communities, the ecosystem lost more soil N and C in wet years. Path analysis showed that high water availability led to higher herbaceous cover in all invasion stages. In stages with native shrubs and perennial grasses, higher perennial grass cover was associated with increased soil C and N, while in annual-dominated stages, higher annual grass cover was associated with losses of soil C and N. Also, soil total C and C:N ratios were more homogeneous in annual-dominated invasion stages as indicated by within-site standard deviations. Loss of native shrubs and perennial grasses and forbs coupled with annual grass invasion may lead to long-term declines in soil N and C and hamper restoration efforts. Restoration strategies that use innovative techniques and novel species to address increasing temperatures and ICV and emphasize maintaining plant community structure—shrubs, grasses, and forbs—will allow sagebrush ecosystems to maintain C sequestration, soil fertility, and soil heterogeneity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号