首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2594篇
  免费   247篇
  国内免费   16篇
  2024年   8篇
  2023年   36篇
  2022年   82篇
  2021年   123篇
  2020年   117篇
  2019年   107篇
  2018年   117篇
  2017年   109篇
  2016年   99篇
  2015年   118篇
  2014年   242篇
  2013年   241篇
  2012年   145篇
  2011年   203篇
  2010年   106篇
  2009年   97篇
  2008年   94篇
  2007年   106篇
  2006年   123篇
  2005年   99篇
  2004年   66篇
  2003年   71篇
  2002年   54篇
  2001年   37篇
  2000年   35篇
  1999年   13篇
  1998年   23篇
  1997年   15篇
  1996年   12篇
  1995年   29篇
  1994年   17篇
  1993年   15篇
  1992年   12篇
  1991年   13篇
  1990年   11篇
  1989年   6篇
  1988年   6篇
  1987年   6篇
  1986年   7篇
  1985年   7篇
  1983年   4篇
  1982年   4篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
排序方式: 共有2857条查询结果,搜索用时 31 毫秒
991.
A number of 2-phenylindole sulfamates with lipophilic side chains in 1- or 5-position of the indole were synthesized and evaluated as steroid sulfatase (estrone sulfatase) inhibitors. Most of the new sulfamates inhibited the enzymatic hydrolysis of estrone sulfate in MDA-MB 231 breast cancer cells with IC50 values between 2 nM and 1 μM. A favorable position for a long side chain is the nitrogen of a carbamoyl group at C-5 of the indole when the phenyl ring carries the sulfamate function. These derivatives inhibit gene activation in estrogen receptor (ER)-positive MCF-7 breast cancer cells in submicromolar concentrations and reduce cell proliferation with IC50 values of ca. 1 μM. All of the potent inhibitors were devoid of estrogenic activity and have the potential for in vivo application as steroid sulfatase inhibitors.  相似文献   
992.
993.
Systemic chemotherapy is the only current method of treatment that provides some chance for long-term survival in patients with advanced or metastatic cancer. γ-Tocotrienol is a natural form of vitamin E found in high concentrations in palm oil and displays potent anticancer effects, but limited absorption and transport of by the body has made it difficult to obtain and sustain therapeutic levels in the blood and target tissues. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase and are an example of a promising cancer chemotherapeutic agent whose clinical usefulness has been limited due to high-dose toxicity. Similarly, erlotinib and gefitinib are anticancer agents that inhibit the activation of individual HER/ErbB receptor subtypes, but have shown limited clinical success because of heterodimerization between different EGF receptor family members that can rescue cancer cells from agents directed against a single receptor subtype. Recent studies have investigated the anticancer effectiveness of low-dose treatment of various statins or EGF receptor inhibitors alone and in combination with γ-tocotrienol on highly malignant +SA mouse mammary epithelial cells in vitro. Combined treatment with subeffective doses of γ-tocotrienol with these other chemotherapeutic agents resulted in a synergistic inhibition of +SA cell growth and viability. These findings strongly suggest that combined treatment of γ-tocotrienol with other anticancer agents may not only provide an enhanced therapeutic response but also provide a means to avoid the toxicity, low bioavailability, or limited therapeutic action associated with high-dose monotherapy.  相似文献   
994.
We describe a method for the quantitative, real-time measurement of DNA glycosylase and AP endonuclease activities in cell nuclear lysates using base excision repair (BER) molecular beacons. The substrate (beacon) is comprised of a deoxyoligonucleotide containing a single base lesion with a 6-Carboxyfluorescein (6-FAM) moiety conjugated to the 5''end and a Dabcyl moiety conjugated to the 3'' end of the oligonucleotide. The BER molecular beacon is 43 bases in length and the sequence is designed to promote the formation of a stem-loop structure with 13 nucleotides in the loop and 15 base pairs in the stem1,2. When folded in this configuration the 6-FAM moiety is quenched by Dabcyl in a non-fluorescent manner via Förster Resonance Energy Transfer (FRET)3,4. The lesion is positioned such that following base lesion removal and strand scission the remaining 5 base oligonucleotide containing the 6-FAM moiety is released from the stem. Release and detachment from the quencher (Dabcyl) results in an increase of fluorescence that is proportionate to the level of DNA repair. By collecting multiple reads of the fluorescence values, real-time assessment of BER activity is possible. The use of standard quantitative real-time PCR instruments allows the simultaneous analysis of numerous samples. The design of these BER molecular beacons, with a single base lesion, is amenable to kinetic analyses, BER quantification and inhibitor validation and is adaptable for quantification of DNA Repair activity in tissue and tumor cell lysates or with purified proteins. The analysis of BER activity in tumor lysates or tissue aspirates using these molecular beacons may be applicable to functional biomarker measurements. Further, the analysis of BER activity with purified proteins using this quantitative assay provides a rapid, high-throughput method for the discovery and validation of BER inhibitors.  相似文献   
995.
996.
We describe the case of a boy with psychomotor delay and dysmorphic features, with a germline 16q22.1 microdeletion identified by array-CGH. The deletion spans 0.24Mb and encompasses three genes (ZFP90, CDH3 and CDH1). The deletion has been demonstrated to be inherited from his mother who was affected by lobular breast cancer (LBC) without any other apparently phenotypic features. We suppose that the microdeletion, in particular ZFP90 which is cerebrally expressed, is causative for the boy's phenotype. Mental retardation in the affected boy can recognize several mechanisms such as variable expressivity, non-penetrance, multifactorial/polygenic inheritance, recessive inheritance, a second rearrangement event and epigenetics. Furthermore, we suggest that the deletion of the CDH1, a tumor suppressor gene, involved in hereditary diffuse gastric cancer (HDGC) and LBC predisposed the mother to the carcinoma.  相似文献   
997.
The α6β4 integrin (referred to as "β4" integrin) is a receptor for laminins that promotes carcinoma invasion through its ability to regulate key signaling pathways and cytoskeletal dynamics. An analysis of published Affymetrix GeneChip data to detect downstream effectors involved in β4-mediated invasion of breast carcinoma cells identified SPARC, or secreted protein acidic and rich in cysteine. This glycoprotein has been shown to play an important role in matrix remodeling and invasion. Our analysis revealed that manipulation of β4 integrin expression and signaling impacted SPARC expression and that SPARC facilitates β4-mediated invasion. Expression of β4 in β4-deficient cells reduced the expression of a specific microRNA (miR-29a) that targets SPARC and impedes invasion. In cells that express endogenous β4, miR-29a expression is low and β4 ligation facilitates the translation of SPARC through a TOR-dependent mechanism. The results obtained in this study demonstrate that β4 can regulate SPARC expression and that SPARC is an effector of β4-mediated invasion. They also highlight a potential role for specific miRNAs in executing the functions of integrins.  相似文献   
998.
999.
Nuclear existence of epidermal growth factor receptor (EGFR) has been documented for more than two decades. Resistance of cancer to radiotherapy is frequently correlated with elevated EGFR expression, activity, and nuclear translocation. However, the role of nuclear EGFR (nEGFR) in radioresistance of cancers remains elusive. In the current study, we identified a novel nEGFR-associated protein, polynucleotide phosphorylase (PNPase), which possesses 3' to 5' exoribonuclease activity toward c-MYC mRNA. Knockdown of PNPase increased radioresistance. Inactivation or knock-down of EGFR enhanced PNPase-mediated c-MYC mRNA degradation in breast cancer cells, and also increased its radiosensitivity. Interestingly, the association of nEGFR with PNPase and DNA-dependent protein kinase (DNAPK) increased significantly in breast cancer cells after exposure to ionizing radiation (IR). We also demonstrated that DNAPK phosphorylates PNPase at Ser-776, which is critical for its ribonuclease activity. The phospho-mimetic S776D mutant of PNPase impaired its ribonuclease activity whereas the nonphosphorylatable S776A mutant effectively degraded c-MYC mRNA. Here, we uncovered a novel role of nEGFR in radioresistance, and that is, upon ionizing radiation, nEGFR inactivates the ribonuclease activity of PNPase toward c-MYC mRNA through DNAPK-mediated Ser-776 phosphorylation, leading to increase of c-MYC mRNA, which contributes to radioresistance of cancer cells.  相似文献   
1000.
Accumulation of DNA damage is implicated in aging. This is supported by the fact that inherited defects in DNA repair can cause accelerated aging of tissues. However, clear-cut evidence for DNA damage accumulation in old age is lacking. Numerous studies report measurement of DNA damage in nuclear and mitochondrial DNA from tissues of young and old organisms, with variable outcomes. Variability results from genetic differences between specimens or the instability of some DNA lesions. To control these variables and test the hypothesis that elderly organisms have more oxidative DNA damage than young organisms, we measured 8,5'-cyclopurine-2'-deoxynucleosides (cPu), which are relatively stable, in tissues of young and old wild-type and congenic progeroid mice. We found that cPu accumulate spontaneously in the nuclear DNA of wild-type mice with age and to a greater extent in DNA repair-deficient progeroid mice, with a similar tissue-specific pattern (liver > kidney > brain). These data, generated under conditions where genetic and environmental variables are controlled, provide strong evidence that DNA repair mechanisms are inadequate to clear endogenous lesions over the lifespan of mammals. The similar, although exaggerated, results obtained from progeroid, DNA repair-deficient mice and old normal mice support the conclusion that DNA damage accumulates with, and likely contributes to, aging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号