首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   775篇
  免费   100篇
  国内免费   4篇
  879篇
  2023年   20篇
  2022年   8篇
  2021年   21篇
  2020年   35篇
  2019年   40篇
  2018年   39篇
  2017年   39篇
  2016年   22篇
  2015年   32篇
  2014年   43篇
  2013年   45篇
  2012年   43篇
  2011年   24篇
  2010年   32篇
  2009年   53篇
  2008年   49篇
  2007年   35篇
  2006年   27篇
  2005年   25篇
  2004年   33篇
  2003年   35篇
  2002年   20篇
  2001年   25篇
  2000年   13篇
  1999年   17篇
  1998年   16篇
  1997年   9篇
  1996年   14篇
  1995年   7篇
  1994年   3篇
  1993年   3篇
  1992年   8篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有879条查询结果,搜索用时 0 毫秒
61.
Abstract Processes acting on different spatial and temporal scales may influence local species richness. Ant communities are usually described as interactive and therefore determined by local processes. In this paper we tested two hypotheses linked to the question of why there is local variation in arboreal ant species richness in the Brazilian savanna (‘cerrado’). The hypotheses are: (i) there is a positive relationship between ant species richness and tree species richness, used as a surrogate of heterogeneity; and (ii) there is a positive relationship between ant species richness and tree density, used as a surrogate of resource availability. Arboreal ants were sampled in two cerrado sites in Brazil using baited pitfall traps and manual sampling, in quadrats of 20 m × 50 m. Ant species richness in each quadrat was used as the response variable in regression tests, using tree species richness and tree density as explanatory variables. Ant species richness responded positively to tree species richness and density. Sampling site also influenced ant species richness, and the relationship between tree density and tree species richness was also positive and significant. Tree species richness may have influenced ant species richness through three processes: (i) increasing the variety of resources and allowing the existence of a higher number of specialist species; (ii) increasing the amount of resources to generalist species; and (iii) some other unmeasured factor may have influenced both ant and tree species richness. Tree density may also have influenced ant species richness through three processes: (i) increasing the amount of resources and allowing a higher ant species richness; (ii) changing habitat conditions and dominance hierarchies in ant communities; and (iii) increasing the area and causing a species–area pattern. Processes acting on larger scales, such as disturbance, altitude and evolutionary histories, as well as sampling effect may have caused the difference between sites.  相似文献   
62.
The degree of interdependence among interacting species has major implications for our understanding of the coevolutionary process and biodiversity maintenance. However, the mutualism strength among fruiting plants and their seed dispersers remains poorly understood in tropical ecosystems. We evaluated simultaneously the effectiveness of the avian seed dispersers of the mistletoe Struthanthus flexicaulis (Loranthaceae) and the contribution of its fruits to their diets in a highland rocky savanna in southeastern Brazil. The mistletoe fruits are small lipid‐rich pseudoberries available throughout the year. Four passerine birds fed on fruits, but Elaenia cristata (Tyrannidae) was the most effective disperser, responsible for more than 96 percent of the dispersed seeds. This bird swallowed fruits whole, expelling and depositing undamaged seeds by regurgitation and bill wiping on perches. From 646 dispersed seeds, 56 percent were deposited on safe sites, thin live twigs of 38 susceptible host species. Elaenia cristata were predominantly frugivorous, feeding on typically ornithocoric fruits of at least 12 species, but also on arthropods. Although fruits represented 75 percent of the feeding bouts along the year, S. flexicaulis fruits represented only 34 percent of the E. cristata diet. Our results highlight the asymmetrical nature of this mutualistic interaction, with the mistletoe life cycle locally linked to one highly effective seed disperser that is more weakly dependent on mistletoes fruits as a food source. We suggest that merging the seed dispersal effectiveness framework with diet assessment of seed dispersers is needed to clarify the asymmetries in mutualistic pairwise interactions involving plants and their animal partners.  相似文献   
63.
Areas of locally intense and frequent grazing, or ‘hotspots’, are pervasive features in tropical grasslands and savannas. In some ecosystems, hotspot presence is clearly associated with edaphic factors (e.g., high clay content and elevated soil fertility), such as those that develop in abandoned cattle bomas. Studies in a range of other savanna ecosystems, however, have failed to find intrinsic soil differences between hotspots and the surrounding matrix. Also, it remains unclear to what extent hotspots are associated with specific assemblages of nutrient‐rich plant species, as opposed to being a manifestation of intraspecific variation in nutritive quality. We conducted simultaneous studies in Kruger (South Africa) and Serengeti (Tanzania) National Parks to re‐evaluate the role of edaphic correlates of hotspot occurrence and to test whether intraspecific variation in plant quality occurs across hotspot‐matrix boundaries. We sampled soils and plants in paired hotspot and matrix plots at multiple sites within each ecosystem to test our a priori hypothesis that hotspots would be associated with distinct species assemblages and differences in soil fertility. We found clear hotspot‐matrix differences in foliar N, particularly within species, despite finding no differences in any soil or plant–soil variables, including N mineralization potential and mycorrhizal inoculation levels. We found only weak differences in community composition across the boundary, suggesting that intraspecific variation in foliar N rather than species turnover is mainly responsible for the enhanced nutritive value of hotspot vegetation. We propose that grazer–plant interactions may be stronger drivers of hotspot maintenance in these systems than plant–soil interactions.  相似文献   
64.
Originality measures how different a given species is from all other co‐occurring species regarding either their phylogenetic history or functional traits. Since it is important to preserve the various aspects of diversity and original species carry more phylogenetic or functional information, originality may be used to assign conservation priorities. Our goal was to evaluate the relationships between phylogenetic and functional originalities, and their simulated losses under extinction scenarios based on abundance, fire tolerance and habitat preference. We placed 100 plots in a cerrado reserve located in central Brazil, sampled all woody plants species within the plots, measured 14 functional traits and measured fire history. We assembled a phylogenetic tree and a functional dendrogram, with which we calculated the originalities. Phylogenetic‐ and functional‐based originalities were correlated. However, the loss of functional originality was different from random extinctions on the abundance and fire tolerance scenarios, whereas the loss of phylogenetic originality was not. When compared with phylogenetic originality, functional originality brought more information to be used in conservation strategies because it was sensitive to differences in species abundance and fire tolerance. Thus, the extinction of rare or fire‐sensitive species would result in important functional changes due to loss of distinctive traits.  相似文献   
65.
In tropical areas, Dynamic Global Vegetation Models (DGVMs) still have deficiencies in simulating the timing of vegetation phenology. To start addressing this problem, standard Fourier‐based methods are applied to aerosol screened monthly remotely sensed phenology time series (Enhanced Vegetation Index, EVI) and two major driving factors of phenology: solar radiation and precipitation (for March 2000 through December 2006 over northern South America). At 1 × 1 km scale using, power (or variance) spectra on good quality aerosol screened time series, annual cycles in EVI are detected across 58.24% of the study area, the strongest (largest amplitude) occurring in the savanna. Terra Firme forest have weak but significant annual cycles in comparison with savannas because of the heterogeneity of vegetation and nonsynchronous phenological events within 1 × 1 km scale pixels. Significant annual cycles for radiation and precipitation account for 86% and 90% of the region, respectively, with different spatial patterns to phenology. Cross‐spectral analysis was used to compare separately radiation with phenology/EVI, precipitation with phenology/EVI and radiation with precipitation. Overall the majority of the Terra Firme forest appears to have radiation as the driver of phenology (either radiation is in phase or leading phenology/EVI at the annual scale). These results are in agreement with previous research, although in Acre, central and eastern Peru and northern Bolivia there is a coexistence of ‘in phase’ precipitation over Terra Firme forest. In contrast in most areas of savanna precipitation appears to be a driver and savanna areas experiencing an inverse (antiphase) relationship between radiation and phenology is consistent with inhibited grassland growth due to soil moisture limitation. The resulting maps provide a better spatial understanding of phenology–driver relationships offering a bench mark to parameterize ecological models.  相似文献   
66.
Upland tropical forests have expanded and contracted in response to past climates, but it is not clear whether similar dynamics were exhibited by gallery (riparian) forests within savanna biomes. Because such forests generally have access to ample water, their extent may be buffered against changing climates. We tested the long‐term stability of gallery forest boundaries by characterizing the border between gallery forests and savannas and tracing the presence of gallery forest through isotopic analysis of organic carbon in the soil profile. We measured leaf area index, grass vs. shrub or tree coverage, the organic carbon, phosphorus, nitrogen and calcium concentrations in soils and the carbon isotope ratios of soil organic matter in two transitions spanning gallery forests and savanna in a Cerrado ecosystem. Gallery forests without grasses typically show a greater leaf area index in contrast to savannas, which show dense grass coverage. Soils of gallery forests have significantly greater concentrations of organic carbon, phosphorus, nitrogen and calcium than those of savannas. Soil organic carbon of savannas is significantly more enriched in 13C compared with that of gallery forests. This difference in enrichment is in part caused by the presence of C4 grasses in savanna ecosystem and its absence in gallery forests. Using the 13C abundance as a signature for savanna and gallery forest ecosystems in 1 m soil cores, we show that the borders of gallery forests have expanded into the savanna and that this process initiated at least 3000–4000 bp based on 14C analysis. Gallery forests, however, may be still expanding as we found more recent transitions according to 14C activity measurements. We discuss the possible mechanisms of gallery forest expansion and the means by which nutrients required for the expansion of gallery forest might accumulate.  相似文献   
67.
We register for first time the occurrence of Epipompilus tucumanus Evans, 1967 in Brazil, and record the spider Ariadna boliviana Simon, 1907 as its host. The observations were made in the National Park of Chapada dos Guimarães, Mato Grosso, Brazil. The prey carriage mechanism is described for first time for this genus, and we provide a video showing this behavior.  相似文献   
68.
Between 2003 and 2005, vertebrae of 151 Xingu River Potamotrygon leopoldi (Potamotrygonidae) (75 males and 76 females) were analysed to derive a growth curve for this species. The disc width (W D) was significantly different between sexes, with females measuring 149–700 mm W D and males 109–500 mm W D. The average percentage error for vertebrae readings of the whole sample was 2·7%. The marginal increment ratio (R MI) showed an increasing trend with the highest value in November, decreasing from December on. The majority of vertebrae displaying R MI zero, occurred in September, but the annual periodicity of ring deposition throughout the year was not conclusive. Tetracycline (TCN) injected specimens were held in captivity for 13 months and displayed a fluorescent mark in vertebrae confirming a yearly periodicity of band pair formation with the translucent ring deposited in September–October. The Akaike information criterion (AIC) showed that, among the seven models considered, the best fit was obtained for the von Bertalanffy modified with W 0 (where W 0 = W D at birth) for both sexes. Growth parameters for females were: W 0 = 149 mm; W = 763·06 mm; k = 0·12 year– 1, whereas for males: W 0 = 109 mm; W = 536·4 and k = 0·22 year?1. Maximal ages were 7·2 years in males and 14·3 years in females. The species shows sexual dimorphism expressed in the growth pattern, size at maturity, longevity and asymptotic sizes. Concern for sustainability is raised due to the construction of the Belo Monte Hydroelectric Power Plant (2015 and 2016) in the State of Pará causing changes to the habitat of this species, which is endemic to the Xingu River and two of its tributaries.  相似文献   
69.
X. Le Roux  T. Bariac  A. Mariotti 《Oecologia》1995,104(2):147-155
Most savanna water balance models assume water partitioning between grasses and shrubs in a two-layer hypothesis, but this hypothesis has not been tested for humid savanna environments. Spatial partitioning of soil water between grasses and shrubs was investigated in a West African humid savanna by comparing the isotopic composition (oxygen-18 and deuterium) of soil water and plant stem water during rainy and dry conditions. Both grass and shrub species acquire most of their water from the top soil layer during both rainy and dry periods. A shift of water uptake pattern towards deeper horizons was observed only at the end of the dry season after shrub defoliation. The mean depth of water uptake, as determined by the isotopic signature of stem water, was consistent with grass and shrub root profiles and with changes in soil water content profiles as surveyed by a neutron probe. This provides evidence for potentially strong competition between shrubs and grasses for soil water in these humid savannas. Limited nutrient availability may explain these competitive interactions. These results enhance our understanding of shrub-grass interactions, and will contribute to models of ecosystem functioning in humid savannas.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号