首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   776篇
  免费   98篇
  国内免费   4篇
  2023年   20篇
  2022年   7篇
  2021年   21篇
  2020年   35篇
  2019年   40篇
  2018年   39篇
  2017年   39篇
  2016年   22篇
  2015年   32篇
  2014年   43篇
  2013年   45篇
  2012年   43篇
  2011年   24篇
  2010年   32篇
  2009年   53篇
  2008年   49篇
  2007年   35篇
  2006年   27篇
  2005年   25篇
  2004年   33篇
  2003年   35篇
  2002年   20篇
  2001年   25篇
  2000年   13篇
  1999年   17篇
  1998年   16篇
  1997年   9篇
  1996年   14篇
  1995年   7篇
  1994年   3篇
  1993年   3篇
  1992年   8篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有878条查询结果,搜索用时 31 毫秒
131.
Abstract Processes acting on different spatial and temporal scales may influence local species richness. Ant communities are usually described as interactive and therefore determined by local processes. In this paper we tested two hypotheses linked to the question of why there is local variation in arboreal ant species richness in the Brazilian savanna (‘cerrado’). The hypotheses are: (i) there is a positive relationship between ant species richness and tree species richness, used as a surrogate of heterogeneity; and (ii) there is a positive relationship between ant species richness and tree density, used as a surrogate of resource availability. Arboreal ants were sampled in two cerrado sites in Brazil using baited pitfall traps and manual sampling, in quadrats of 20 m × 50 m. Ant species richness in each quadrat was used as the response variable in regression tests, using tree species richness and tree density as explanatory variables. Ant species richness responded positively to tree species richness and density. Sampling site also influenced ant species richness, and the relationship between tree density and tree species richness was also positive and significant. Tree species richness may have influenced ant species richness through three processes: (i) increasing the variety of resources and allowing the existence of a higher number of specialist species; (ii) increasing the amount of resources to generalist species; and (iii) some other unmeasured factor may have influenced both ant and tree species richness. Tree density may also have influenced ant species richness through three processes: (i) increasing the amount of resources and allowing a higher ant species richness; (ii) changing habitat conditions and dominance hierarchies in ant communities; and (iii) increasing the area and causing a species–area pattern. Processes acting on larger scales, such as disturbance, altitude and evolutionary histories, as well as sampling effect may have caused the difference between sites.  相似文献   
132.
Abstract Changes in plant abundance within a eucalypt savanna of north‐eastern Australia were studied using a manipulative fire experiment. Three fire regimes were compared between 1997 and 2001: (i) control, savanna burnt in the mid‐dry season (July) 1997 only; (ii) early burnt, savanna burnt in the mid‐dry season 1997 and early dry season (May) 1999; and (iii) late burnt, savanna burnt in the mid‐dry season 1997 and late dry season (October) 1999. Five annual surveys of permanent plots detected stability in the abundance of most species, irrespective of fire regime. However, a significant increase in the abundance of several subshrubs, ephemeral and twining perennial forbs, and grasses occurred in the first year after fire, particularly after late dry season fires. The abundance of these species declined toward prefire levels in the second year after fire. The dominant grass Heteropogon triticeus significantly declined in abundance with fire intervals of 4 years. The density of trees (>2 m tall) significantly increased in the absence of fire for 4 years, because of the growth of saplings; and the basal area of the dominant tree Corymbia clarksoniana significantly increased over the 5‐year study, irrespective of fire regime. Conservation management of these savannas will need to balance the role of regular fires in maintaining the diversity of herbaceous species with the requirement of fire intervals of at least 4‐years for allowing the growth of saplings >2 m in height. Whereas late dry season fires may cause some tree mortality, the use of occasional late fires may help maintain sustainable populations of many grasses and forbs.  相似文献   
133.
Fire is an integral ecological factor in African savanna ecosystems, but its effects on savanna productivity are highly variable and less understood. We conducted a field experiment to quantify changes in herbaceous phytomass and nutrient composition in a Sudanian savanna woodland subjected to annual early fire from 1993 to 2004. Fire effects were also assessed on two perennial and two annual grass species during the following growing season. Early fire significantly reduced above‐ground phytomass of the studied species (P = 0.03), their crude protein (P = 0.022), neutral detergent insoluble crude protein (P = 0.016) and concentrations of Ca, Fe and Mn (P < 0.05). Perennial grasses had higher above‐ground phytomass but lower total crude protein and fat than annual grasses. Nonstructural carbohydrates tended to be higher for annuals, while fibre and lignin contents were high for perennials. Except Na and Fe, the concentration of mineral elements varied between species. Fire did not affect measures of digestibility and metabolizable energy, but its effect differed significantly among species. In conclusion, the results illustrate that long‐term frequent fire will counterbalance the short‐term increase in soil fertility and plant nutrient concentrations claimed to be accrued from single or less frequent fire.  相似文献   
134.
This study is an exercise to check the efficiency of the existing reserve system, and to show how systematic conservation planning—using information available and the complementarity concept—can improve the basis for decisions and minimize costs. We verified the performance, in number of cells and primate species representation, of the existing Atlantic Forest (Brazil) reserve network with a quarter-degree resolution grid, with 1,884 cells. We used occurrence data of 20 endemic primate species, and the maps of 237 existing reserves. Reserve networks were selected to represent primate species first considering no pre-existing reserves in Atlantic Forest, and then, considering the existing reserve system, taking into account the minimum area for viable population of the larger species (Northern muriqui Brachyteles hypoxanthus). Reserve selection was carried out using the complementarity concept implemented by a simulated annealing algorithm. Primate species representation (at least one occurrence in the network) could be achieved with 8% of the existing reserve system (nine cells in relation to the 120 in the existing reserve system). We found that today’s reserve system represents 89% of endemic primate species, excluding the species Coimbra Filho’s titi monkey (Callicebus coimbrai) and Marcgraf’s capuchin (Cebus flavius). The networks selected without considering existing reserves contained nine cells. The networks selected considering existing reserves (120 cells), had two new cells necessary to represent all the primates. This does not mean that a viable alternative is to start from zero (i.e., nonexistent reserves). Identifying critical supplementary areas using biodiversity information to fill the gaps and then starting “conservation in practice” in these areas should be priorities.  相似文献   
135.
Summary  Corticioid fungi from the Kimberley Region of Western Australia are reviewed. 31 species are reported, of which five, Aleurodiscus kimberleyanus, Athelopsis vesicularis, Dendrothele cornivesiculosa, Hyphoderma tubulicystidium, and Phanerochaete subcrassispora are described as new. Grandinia glauca is given the new combination Grammothele glauca, and Hydnum investiens the new combination Phanerochaete investiens. A further eight species are recorded which have not previously been reported from Australia.  相似文献   
136.
ABSTRACT   In this article, I focus on the ways in which audiences in the Amazonian community of Gurupá respond to television's interpellation for pan-national identity. I examine how viewers heed, miss, ignore, and resist the call for identity as well as how their various responses to this "call" shape their worldview and behavior and impact the process of nation building. Utilizing audience ethnography over a 25-year period, I show in this study how televisual messages are contextualized and localized, mitigating the forces of nationalistic homogenization.  相似文献   
137.
Fallen branches are a substantial component of coarse woody debris and a key ecological resource. The depletion of stocks of coarse woody debris since European settlement has contributed to the degradation of Australian grassy box woodlands, including the loss of biodiversity. Restoration options for remnant woodlands include the augmentation of coarse woody debris stocks. However, the extensive modification of grassy box woodlands has left few reference sites for establishing benchmarks to guide such restoration. In this paper we demonstrate a method for predicting fallen branch debris loads in the absence of reference sites, using data from a yellow box–red gum woodland. Our methodology is in two stages: first, the total volume of branch debris under individual trees was modelled; and second, these models were applied to groups of trees to predict stand‐level loads of fallen branch debris. Although the models were developed for yellow box–red gum woodlands, the methodology would be applicable to other communities that lack reference sites. Predicted benchmark loads of fallen branch debris for yellow box–red gum woodland were between 7.0 m3 ha?1 and 11.9 m3 ha?1. Large senescing trees contributed the bulk of fallen branch debris. Model predictions indicated a 100‐cm diameter at breast height (dbh) tree was 10 times more likely to produce debris than a 50‐cm dbh tree, and if debris was present a 100‐cm dbh tree produced approximately 10 times the volume of branch debris produced by a 50‐cm dbh tree. These results highlight the importance of large senescing trees for the production of fallen branch debris and support the keystone role of large trees within remnant woodlands, and the need to conserve these structures. Our results also support the active management of regrowth woodland stands to facilitate the progression of individual trees to maturity and senescence. In particular, thinning of regrowth stands may promote the growth of retained trees, ensuring they contribute to fallen branch debris stocks with a minimum time lag.  相似文献   
138.
Tropical savannas are typically highly productive yet fire‐prone ecosystems, and it has been suggested that reducing fire frequency in savannas could substantially increase the size of the global carbon sink. However, the long‐term demographic consequences of modifying fire regimes in savannas are difficult to predict, with the effects of fire on many parameters, such as tree growth rates, poorly understood. Over 10 years, we examined the effects of fire frequency on the growth rates (annual increment of diameter at breast height) of 3075 tagged trees, at 137 locations throughout the mesic savannas of Kakadu, Nitmiluk and Litchfield National Parks, in northern Australia. Frequent fires substantially reduced tree growth rates, with the magnitude of the effect markedly increasing with fire severity. The highest observed frequencies of mild, moderate and severe fires (1.0, 0.8 and 0.4 fires yr?1, respectively) reduced tree growth by 24%, 40% and 66% respectively, relative to unburnt areas. These reductions in tree growth imply reductions in the net primary productivity of trees by between 0.19 t C ha?1 yr?1, in the case of mild fires, and 0.51 t C ha?1 yr?1, in the case of severe fires. Such reductions are relatively large, given that net biome productivity (carbon sequestration potential) of these savannas is estimated to be just 1–2 t C ha?1 yr?1. Our results suggest that current models of savanna tree demography, that do not account for a relationship between severe fire frequency and tree growth rate, are likely to underestimate the long‐term negative effects of frequent severe fires on tree populations. Additionally, the negative impact of frequent severe fires on carbon sequestration rates may have been underestimated; reducing fire frequencies in savannas may increase carbon sequestration to a greater extent than previously thought.  相似文献   
139.
Although natural populations of drosophilid flies have been the subject of ecological studies, the population ecology of these insects in the tropics is still poorly known. This paper discusses aspects of the relationship between drosophilids and their environment, based on 28 monthly collections made in two contrasting vegetations of the Brazilian Cerrado biome: gallery forest and savanna. Exotic species were found in both types of environment; but 14 of the 30 captured Neotropical species occurred exclusively in the gallery forests, probably because of their climatic stability and greater environmental heterogeneity. Even though some endemic species were more abundant in the dry and cold months, most populations exhibited peaks of abundance in the wet season. The species diversity indexes (H' and D), higher in the dry season, were probably affected by increased evenness at this time of year, when the populations of practically all the species are greatly reduced. As species richness in the savanna vegetation clearly decreased in the dry season, increasing again in the wet season, it is suggested that some drosophilids migrate to the forests when climatic conditions are too stressful in the savannas.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 233–247.  相似文献   
140.
Aims Mesic grasslands have a long evolutionary history of grazing by large herbivores and as a consequence, grassland species have numerous adaptations allowing them to respond favourably to grazing. Although empirical evidence has been equivocal, theory predicts that such adaptations combined with alterations in resources can lead to grazing-induced overcompensation in aboveground net primary production (ANPP; grazed ANPP> ungrazed ANPP) under certain conditions. We tested two specific predictions from theory. First, overcompensation is more likely to occur in annually burned grasslands because limiting nutrients that would be lost with frequent fires are recycled through grazers and stimulate ANPP. Second, overcompensation of biomass lost to grazers is more likely to occur in unburned sites where grazing has the greatest effect on increasing light availability through alterations in canopy structure.Methods We tested these nutrient versus light-based predictions in grazed grasslands that had been annually burned or protected from fire for>20 years. We assessed responses in ANPP to grazing by large ungulates using both permanent and moveable grazing exclosures (252 exclosures from which biomass was harvested from 3192 quadrats) in a 2-year study. Study sites were located at the Konza Prairie Biological Station (KPBS) in North America and at Kruger National Park (KNP) in South Africa. At KPBS, sites were grazed by North American bison whereas in KNP sites were grazed either by a diverse suite of herbivores (e.g. blue wildebeest, Burchell's zebra, African buffalo) or by a single large ungulate (African buffalo).Important findings We found no evidence for overcompensation in either burned or unburned sites, regardless of grazer type. Thus, there was no support for either mechanism leading to overcompensation. Instead, complete compensation of total biomass lost to grazers was the most common response characterizing grazing–ANPP relationships with, in some cases, undercompensation of grass ANPP being offset by increased ANPP of forbs likely due to competitive release. The capability of these very different grass-dominated systems to maintain ANPP while being grazed has important implications for energy flow, ecosystem function and the trophic dynamics of grasslands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号