首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3308篇
  免费   217篇
  国内免费   251篇
  2023年   53篇
  2022年   48篇
  2021年   71篇
  2020年   88篇
  2019年   120篇
  2018年   109篇
  2017年   98篇
  2016年   88篇
  2015年   88篇
  2014年   156篇
  2013年   249篇
  2012年   118篇
  2011年   129篇
  2010年   118篇
  2009年   158篇
  2008年   152篇
  2007年   171篇
  2006年   142篇
  2005年   137篇
  2004年   122篇
  2003年   100篇
  2002年   88篇
  2001年   93篇
  2000年   80篇
  1999年   65篇
  1998年   53篇
  1997年   43篇
  1996年   44篇
  1995年   56篇
  1994年   46篇
  1993年   57篇
  1992年   42篇
  1991年   35篇
  1990年   47篇
  1989年   38篇
  1988年   39篇
  1987年   27篇
  1986年   34篇
  1985年   39篇
  1984年   58篇
  1983年   28篇
  1982年   35篇
  1981年   36篇
  1980年   35篇
  1979年   28篇
  1978年   39篇
  1977年   15篇
  1976年   13篇
  1974年   12篇
  1973年   15篇
排序方式: 共有3776条查询结果,搜索用时 265 毫秒
991.
Growth and pigment concentrations of the, estuarine dinoflagellate, Prorocentrum mariae-lebouriae (Parke and Ballantine) comb. nov., were measured in cultures grown in white, blue, green and red radiation at three different irradiances. White irradiances (400–800 nm) were 13.4, 4.0 and 1.8 W · m?2 with photon flux densities of 58.7 ± 3.5, 17.4 ± 0.6 and 7.8 ± 0.3 μM quanta · m?2· s?1, respectively. All other spectral qualities had the same photon flux densities. Concentrations of chlorophyll a and chlorophyll c were inversely related to irradiance. A decrease of 7- to 8-fold in photon flux density resulted in a 2-fold increase in chlorophyll a and c and a 1.6- to 2.4-fold increase in both peridinin and total carotenoid concentrations. Cells grown in green light contained 22 to 32% more peridinin per cell and exhibited 10 to 16% higher peridinin to chlorophyll a ratios than cells grown in white light. Growth decreased as a function of irradiance in white, green and red light grown cells but was the same at all blue light irradiances. Maximum growth rates occurred at 8 μM quanta · m?2· s?1 in blue light, while in red and white light maximum growth rates occurred at considerably higher photon flux densities (24 to 32 μM quanta · m?2· s?1). The fastest growth rates occurred in blue and red radiation. White radiation producing maximum growth was only as effective as red and blue light when the photon flux density in either the red or blue portion of the white light spectrum was equivalent to that of a red or of blue light treatment which produced maximum growth rates. These differences in growth and pigmentation indicate that P. mariae-lebouriae responds to the spectral quality under which it is grown.  相似文献   
992.
A study of certain fossil, limestone-forming algae in upper Ordovician beds (Elkhorn and Whitewater Formations of the Richmond Subseries of the Cincinnati Series) in southwestern Ohio and adjacent eastern Indiana culminated with the conclusion that an organism originally described as a sponge, and later placed in the genus Girvanella Nicholson and Etheridge (Cyanochloronta), should in fact be transferred to the genus Solenopora Dybowski (Rhodophycophyta), A calcified reproductive layer was discovered in one of the specimens sectioned. These structures are interpreted as either sporangia or as sporangial chambers, and occur in a sorus rather than a conceptacle type of arrangement. This find has an important bearing on the phylogenetic history of the Solenoporaceae.  相似文献   
993.
Reports on the polymeric state of actin in the red cell have been diverse. We have used phalloidin to stabilize the actin in erythrocyte ghosts prior to extraction in low ionic strength media. A mild proteolytic digestion and Sepharose 4B gel filtration enable an F-actin polymer to be isolated in pure form [1]. Detailed size analysis of this polymer in a range of experiments suggests that actin exists in the erythrocyte principally as a polymer of 100 nm length composed of 30 monomers in a double helical chain 15 monomers long with an estimated molecular weight of 1.3 × 106 daltons.  相似文献   
994.
995.
Bovine oocytes and blastocysts produced in vitro are frequently of lower quality and less cryotolerant than those produced in vivo, and greater accumulation of lipids in the cytoplasm has been pointed out as one of the reasons. In human adipocytes cGMP signaling through the activation of PKG appears to be involved in lipid metabolism, and components of this pathway have been detected in bovine cumulus-oocyte complexes (COCs). The aim of this study was to investigate the influence of this pathway on the lipid content in oocytes and expression of PLIN2 (a lipid metabolism-related gene) in cumulus cells. COCs were matured in vitro for 24 h with different stimulators of cGMP synthesis. The activation of soluble guanylyl cyclase (sGC) by Protoporphyrin IX reduced lipid content (22.7 FI) compared to control oocytes (36.45 FI; P <0.05). Stimulation of membrane guanylyl cyclase (mGC) with natriuretic peptides precursors A and C (NPPA and NPPC) had no effect (36.5 FI; P>0.05). When the PKG inhibitor KT5823 was associated with Protoporphyrin IX, its effect was reversed and lipid contents increased (52.71 FI; P<0.05). None of the stimulators of cGMP synthesis affected the expression of PLIN2 in cumulus cells. In conclusion, stimulation of sGC for cGMP synthesis promotes lipolytic activities in bovine oocytes matured in vitro and such effect is mediated by PKG. However, such effect may vary depending on the stimulus received and/or which synthesis enzyme was activated, as stimulation of mGC had no effects.  相似文献   
996.
The effects of partial defoliation on photosynthesis, whole-seedling carbon allocation, partitioning and growth were studied for two species with contrasting foliar traits. Field-grown seedlings of deciduous Japanese larch ( Larix leptolepis ) and evergreen red pine ( Pinus resinosa ) were defoliated by hand in early summer for 2 consecutive years. In the first year (1990), seedlings were defoliated by removing the distal 0, 25, 50 or 75% of each needle. In the second year (1991), seedlings were defoliated either 0 or 50%, regardless of previous defoliation treatments. Defoliation had little effect on photosynthesis and starch concentration in whole seedlings of either species in the first year. In the second year, photosynthesis increased in both species in response to the 1991 defoliation treatment, and in red pine also increased in response to the 1990 defoliation treatment. Further, in 1991 both larch and pine had decreased whole-seedling total non-structural carbohydrate concentrations in all seedlings that were defoliated at least once over the 2-yr period. This decrease was noted mostly in the starch component of the non-structural carbohydrates, and was similar in both species. In 1991, biomass was similarly decreased in both species in response to 1991 defoliation. Both species showed overcompensation in total and component biomass in seedlings defoliated by 25% in 1990. Overall, the results do not support the widely held belief that evergreen trees are substantially more affected than deciduous trees by defoliation.  相似文献   
997.
Hansen  Randi A. 《Plant and Soil》1999,209(1):37-45
The contribution of microarthropod activity to litter decomposition varies widely but can be substantial. Oribatid mites are the most diverse and abundant of the microarthropod groups in forest litter. This experiment was designed to examine the effect of litter type and complexity on the diversity and species composition of oribatid mites, and to test whether alterations in species composition due to litter type affected litter decomposition. In an array of plots on a mixed-hardwood site in the mountains of North Carolina, I exposed microarthropod assemblages to a range of litter types: yellow birch, sugar maple, red oak and two mixed litters. Over several years, the litter types selected oribatid mite assemblages of different species composition. By comparing the decomposition of consecutive cohorts of litter, it was possible to detect differences in decomposition accompanying the shifts in the assemblage. A comparison of the mass loss rates between the two litter cohorts over eighteen months reveals similar trajectories for four litter types. In the oak litter, however, the second cohort disappeared significantly faster than the first. In both years, the litters came from the same trees and were nearly identical in initial carbon and nitrogen contents. Since the response was specific to oak litter, it is unlikely that differences in environmental factors are responsible for the faster mass loss of oak. A significant increase of endophagous oribatid mites, those that burrow into plant material, in the second cohort of oak may account for its accelerated decomposition. The woody petioles and thick leaf-planes of oak leaves provide microhabitats for burrowing mites. Endophage activity can accelerate the litter decomposition both through direct comminution of leaf material and by facilitating microbial growth. Because of their low population growth rates, oribatid populations that are reduced by disturbance are slow to recover and by disrupting these non-resilient populations, disturbance may have long-term repercussions for decomposition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
998.
Mechanisms of hemoglobin transition during bullfrog metamorphosis were investigated by labeling red blood cells from larvae (L-RBC) and from froglets (A-RBC) with a fluorescent dye, PKH26. The life span of the labeled L-RBC in systemic circulation was significantly shorter when they were injected into the animals at the metamorphic climax, compared to injection into pre- or postmetamorphic animals. The A-RBC had a long life span regardless of the metamorphic stage of the recipient animal. Therefore, L-RBC were selectively removed from the systemic circulation at the time of metamorphic climax. During climax, the labeled L-RBC were ingested by hepatic and splenic macrophages, indicating that macrophages are involved in the specific elimination of L-RBC.  相似文献   
999.
Ozone (O3)-induced accelerated senescence of leaves was measured in four tree species: black cherry ( Prunus serotina ), hybrid poplar ( Populus maximowizii x trichocarpa , clone 245), northern red oak ( Quercus rubra ) and sugar maple ( Acer saccharum ). Seedlings or ramets of the four species were subjected to chronic O3 exposures and designated leaves harvested periodically from emergence to senescence. Gas exchange was analysed, and concentrations of total soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase were measured as indicators of leaf senescence. Total antioxidant potential and ascorbate peroxidase and glutathione reductase activities also were determined. Black cherry and hybrid poplar exhibited O3-induced accelerated leaf senescence, whereas sugar maple and northern red oak did not. When the O3 effects were related to cumulative uptake of the gas, black cherry was the most sensitive of the four species. Although hybrid poplar exhibited similar symptoms of O3-induced accelerated senescence after the same exposure period as did black cherry, this species took up much greater quantities of O3 to achieve the same response. The O3-induced increase in glutathione reductase activity in hybrid poplar was consistent with the capacity of this species to take up high concentrations of the gas. Relative tolerance of northern red oak and sugar maple could be explained only in part by lower cumulative O3 uptake and lower rate of uptake. Sugar maple had the highest antioxidant potential of all four species, which may have contributed to O3 tolerance of this species. Ascorbate peroxidase activity, when expressed on a fresh weight basis, could not account for differential sensitivity among the four species.  相似文献   
1000.
The Neotropics harbors a megadiverse ichthyofauna comprising over 6300 species with approximately 80% in just three taxonomic orders within the clade Characiphysi. This highly diverse group has evolved in tropical South America over tens to hundreds of millions of years influenced mostly by re‐arrangements of river drainages in lowland and upland systems. In this study, we investigate patterns of spatial diversification in Neotropical freshwater fishes in the family Curimatidae, a species‐rich clade of the order Characiformes. Specifically, we examined ancestral areas, dispersal events, and shifts in species richness using spatially explicit biogeographic and macroevolutionary models to determine whether lowlands–uplands serve as museums or cradles of diversification for curimatids. We used fossil information to estimate divergence times in BEAST, multiple time‐stratified models of geographic range evolution in BioGeoBEARS, and alternative models of geographic state‐dependent speciation and extinction in GeoHiSSE. Our results suggest that the most recent common ancestor of curimatids originated in the Late Cretaceous likely in lowland paleodrainages of northwestern South America. Dispersals from lowland to upland river basins of the Brazilian and Guiana shields occurred repeatedly across independently evolving lineages in the Cenozoic. Colonization of upland drainages was often coupled with increased rates of net diversification in species‐rich genera such as Cyphocharax and Steindachnerina. Our findings demonstrate that colonization of novel aquatic environments at higher elevations is associated with an increased rate of diversification, although this pattern is clade‐dependent and driven mostly by allopatric speciation. Curimatids reinforce an emerging perspective that Amazonian lowlands act as a museum by accumulating species along time, whereas the transitions to uplands stimulate higher net diversification rates and lineage diversification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号