首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1397篇
  免费   94篇
  国内免费   40篇
  2023年   19篇
  2022年   40篇
  2021年   52篇
  2020年   50篇
  2019年   60篇
  2018年   50篇
  2017年   32篇
  2016年   40篇
  2015年   52篇
  2014年   56篇
  2013年   70篇
  2012年   58篇
  2011年   72篇
  2010年   54篇
  2009年   62篇
  2008年   65篇
  2007年   69篇
  2006年   61篇
  2005年   50篇
  2004年   56篇
  2003年   62篇
  2002年   55篇
  2001年   35篇
  2000年   32篇
  1999年   34篇
  1998年   38篇
  1997年   15篇
  1996年   16篇
  1995年   22篇
  1994年   19篇
  1993年   13篇
  1992年   14篇
  1991年   15篇
  1990年   9篇
  1989年   7篇
  1988年   7篇
  1987年   5篇
  1986年   7篇
  1985年   7篇
  1984年   11篇
  1982年   8篇
  1981年   7篇
  1980年   5篇
  1979年   1篇
  1977年   5篇
  1976年   5篇
  1975年   2篇
  1973年   1篇
  1972年   2篇
  1971年   3篇
排序方式: 共有1531条查询结果,搜索用时 31 毫秒
31.
32.
Calcification in aquatic plants   总被引:1,自引:0,他引:1  
Abstract. The CaCO3 deposits of aquatic plants may be intra-, inter- and extracellular. Calcification is mainly the result of photosynthetic CO2 or HCO3 assimilation. This raises the local pH and CO2−3 concentration resulting from shifts in the dissolved inorganic carbon equilibrium, due to either net CO2 depletion as in Halimeda or localized OH efflux (or H+ influx) as in Chara. The plant cell wall may be important in CaCO3 nucleation by acting as an epitaxial substratum or template, or by creating a microenvironment enriched in Ca2+ compared to Mg2+. Hypotheses on the reason for the lack of calcification in many aquatic plants are presented.  相似文献   
33.
Summary Centrifugation of young seedlings ofTriticum durum andTriticum aestivum for 8–10 hours at 1,500–2,000 x g causes a serious disorder of the spatial organelle relationships in the interphase as well as the preprophase and mitotic subsidiary cell mother cells (SMCs). The nucleus, most organelles and cytoplasm are displaced to the centrifugal end of the cell, while the vacuoles lie at the other end. However, after centrifugation, the preprophase microtubule bands (PMBs) are nucleated and remain at the expected position close to the guard cell mother cells (GMCs). In some elongated SMCs the PMBs become completely separated from the nucleus. The mitotic spindle exhibits variable orientation and is usually formed at some distance from the PMB cortical zone.Cytokinesis in SMCs is spatially highly disturbed and the cell plate shows a variety of unpredictable dispositions, which seem to be determined by: 1. the position of the preprophase-prophase nucleus and the orientation of the mitotic spindle as well as their spatial relationships to the PMB cortical zone, and 2. the space available for cell plate growth. Many of the daughter cells exhibit a highly variable shape and size in different planes. Usually one edge of the cell plate partly or totally joins the anticlinal parent wall adjacent to the PMB cortical zone.In some SMCs ofZea mays andTriticum aestivum, the junction regions of the periclinal walls with the anticlinal ones, lined by the PMB cortical zone in normal SMCs, are detectably thickened after the arrest of mitosis and the prevention of interphase microtubule formation by a prolonged colchicine treatment. In a small number of protodermal cells of the same plants, participating in the development of stomatal complexes, irregular wall bodies or incomplete wall sheets were formed at wall regions lined by the PMB cortical zone.The presented observations are in line with the following hypotheses: 1. the PMB cortical zone interacts with the growing edges of the cell plate attracting it to fuse with the underlying parent wall when the latter approaches the former at a critical distance, and 2. in SMCs particular regions of the PMB cortical zone and/or the adjacent plasmalemma promote the local wall deposition in the absence of microtubules.  相似文献   
34.
Brain microtubule protein, prepared by two types of recycling methods, undergoes “flash” phosphorylation in the presence of [γ-32p]ATP through sequential action of protein kinase and phosphoprotein phosphatase present in microtubule protein. SDS electrophoretic analysis indicates that MAP1, tau protein, and tubulin are poorly phosphorylated, and MAP2 is the major site of phosphorylation. To improve [32P]phosphoprotein stability in the presence of the kinase/phosphatase cycle, 3′,5′-cyclicAMP, orthophosphate, or fluoride ion may be added. After separation from tubulin by phosphocellulose chromatography, the MAP fraction exhibits autophosphorylation. Finally, the maximal extent of autophosphorylation is observed with an ATP regenerating system using ADP, [32P]acetyl-P, and bacterial acetate kinase; this results in the incorporation of 3–4 phosphoryl groups per MAP2 subunit.  相似文献   
35.
The binding of [3H]mebendazole ([3H]MBZ) to tubulin in benzimidazole-susceptible (BZ-S) and benzimidazole-resistant (BZ-R) strains of Trichostrongylus colubriformis and Caenorhabditis elegans was examined in order to investigate the biochemical changes to tubulin that result in BZ resistance in parasitic and free-living nematodes. In both species the extent of [3H]MBZ binding to tubulin was significantly reduced in the BZ-R strain compared with the BZ-S strain. The decrease in [3H]MBZ binding in the BZ-R strain of each species was the result of a significant reduction in the amount of charcoal stable [3H]MBZ-tubulin complexes and was not related to a change in the association constant of the [3H]MBZ-tubulin interaction. [3H]MBZ binding to tubulin was temperature dependent, reaching maximum levels at 37°C in BZ-S T. colubriformis and 10°C in BZ-R T. colubriformis. Both the BZ-S and BZ-R strains of C. elegans displayed maximum [3H]MBZ binding at 4°C. Resistance ratios derived from the amount of [3H]MBZ binding in the BZ-S and BZ-R strains and in vitro development assays demonstrated that the temperature dependence and extent of drug binding was indicative of BZ resistance status and was species specific in the BZ-S isolates. These results indicate that biochemical differences exist in the binding of benzimidazole carbamates to tubulin in nematode species, and suggest that the susceptibility of the parasitic nematodes to the benzimidazole anthelmintics is the result of a unique high affinity and/or high capacity interaction ofbenzimidazole carbamates with tubulin.  相似文献   
36.
Previously we have demonstrated the dynamic change of microtubules (MTs) during cell cycle progression using highly synchronized tobacco BY-2 cells and characterized the specific transition points of MT organization (Hasezawa and Nagata, 1991). In this study the effect of okadaic acid (OA), a specific inhibitor of protein phosphatase 1 and 2A, on such changes of MTs during cell cycle was examined. These experiments revealed that cell cycle was arrested before the formation of the preprophase band (PPB), at anaphase and at the border of M/G1. Although the block at the anaphase seemed to be analogous to that observed in animal cells (Yamashita et al., 1990), the other two blocks were specific to plant cells. It is interesting that these two blocks coincided with the transition points of MT organization, as revealed in the previous study (Hasezawa and Nagata, 1991). Thus it is proposed that phosphorylation is involved in MT organization, although the effect of OA has been shown mainly to be the activation of cdc-2/histone H1 kinase in animal cells. Another inhibitor of protein phosphatase 1 and 2A, calyculin A (CLA), showed very similar effects on the cell cycle progression. The use of such inhibitors to dissect the cell cycle progression of plant cells is discussed.  相似文献   
37.
Rates of carbon fixation in coccolithophorids in culture, unlike many other algae, are carbon limited at ambient levels of dissolved inorganic carbon (DIC). Apparently, plants often rely on activity of carbonic anhydrase (CA) to raise the level of CO2 in cells and achieve carbon saturation. However, CA activities in the coccolithophorids, Coccolithus (= Emiliania) huxleyi Lohmann and Hymenomonas (=Cricosphaera) carterae Braarud, were either not detectable or very low compared to activities in other systems, including other algae, higher plants, and representative animals. Furthermore, additions of CA to medium with 2 mM DIC at pH 8.1 resulted in nearly 30% enhancement of photosynthesis, but not coccolith formation. Although carbon fixation in coccolithophorids can be suppressed by the CA inhibitor acetazolamide, studies of CaCO3 nucleation revealed a non-specific effect of the inhibitor. Using a 30 min assay based on pH decreases accompanying loss of dissolved. CO32-, inhibition of crystal formation in the absence of CA at 1 mM acetazolamide was demonstrated for decalcified crab carapace, a tissue with which normal CaCo3 deposition in vitro has been shown. The results suggest only a minor role for CA in coccolithophorids.  相似文献   
38.
Tertiary amine local anesthetics (dibucaine, Tetracaine, procaine, etc.) modify cell morphology, concanavalin A (Con A)-mediated agglutinability and redistribution of Con A receptors. Con A agglutination of untransformed mouse 3T3 cells was enhanced at low concentrations of local anesthetics, and the dynamics of fluorescent-Con A indicated that ligand-induced clustering was increased in the presence of the drugs. In contast, these drugs inhibited Con A-induced receptor capping on mouse spleen cells. These effects can be duplicated by combinations of vinblastine (or colchicine) and cytochalasin B suggesting that local anesthetics act on microtubule cell surface receptor mobility and distribution. It is proposed that tertiary amine local anesthetics displace plasma membrane-bond Ca2+, resulting in disengagement of microfilament systems from the plasma membrane and increased cellular Ca2+ concentration to levels which disrupt microtubular organization. The possible involvement of cellular Ca2+ in cytoskeletal destruction by local anesthetics was investigated utilizing Ca2+-specific ionophores A23187 and X537A. In media containing Ca2+ and cytochalasin B these ionophores caused effects similar to tertiary amine local anesthetics.  相似文献   
39.
Abstract

Certain aerobic, Gram-negative bacteria, including the epiphytic plant pathogen, Pseudomonas syringae, possess a membrane protein that enables them to nucleate crystallization in supercooled water. Currently, these ice-nucleating (IN) bacteria are being used in snow making and have potential applications in the production and texturing of frozen foods, and as a replacement of silver iodide in cloud seeding. A negative aspect of these IN bacteria is frost damage to plant surfaces. Thus, of the various types of biological ice nucleators, bacteria have been the subject of most research and also appear relevant to the anticipated practical uses. The intent of this review is to explain the identification and ecology of the ice-nucleating bacteria, as well as to discuss aspects of molecular biology related to ice nucleation and consider existing and potential applications of this unique phenomenon.  相似文献   
40.
Mitotic centromere-associated kinesin (MCAK) is the best characterized member of the kinesin-13 family and plays important roles in microtubule dynamics during mitosis. Its activity and subcellular localization is tightly regulated by an orchestra of mitotic kinases, such as Aurora B. It is well known that serine 196 of MCAK is the major phosphorylation site of Aurora B in Xenopus leavis extracts and that this phosphorylation regulates its catalytic activity and subcellular localization. In the current study, we have addressed the conserved phosphorylation site serine 192 in human MCAK to characterize its function in more depth in human cancer cells. Our data confirm that S192 is the major phosphorylation site of Aurora B in human MCAK and that this phosphorylation has crucial roles in regulating its catalytic activity and localization at the kinetochore/centromere region in mitosis. Interfering with this phosphorylation leads to a delayed progression through prometa- and metaphase associated with mitotic defects in chromosome alignment and segregation. We show further that MCAK is involved in directional migration and invasion of tumor cells, and interestingly, interference with the S192 phosphorylation affects this capability of MCAK. These data provide the first molecular explanation for clinical observation, where an overexpression of MCAK was associated with lymphatic invasion and lymph node metastasis in gastric and colorectal cancer patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号