首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4705篇
  免费   169篇
  国内免费   47篇
  2023年   26篇
  2022年   34篇
  2021年   62篇
  2020年   66篇
  2019年   67篇
  2018年   74篇
  2017年   62篇
  2016年   54篇
  2015年   82篇
  2014年   168篇
  2013年   207篇
  2012年   136篇
  2011年   237篇
  2010年   113篇
  2009年   179篇
  2008年   228篇
  2007年   199篇
  2006年   196篇
  2005年   120篇
  2004年   149篇
  2003年   107篇
  2002年   91篇
  2001年   70篇
  2000年   84篇
  1999年   75篇
  1998年   105篇
  1997年   94篇
  1996年   97篇
  1995年   117篇
  1994年   118篇
  1993年   77篇
  1992年   118篇
  1991年   106篇
  1990年   100篇
  1989年   97篇
  1988年   93篇
  1987年   82篇
  1986年   84篇
  1985年   113篇
  1984年   117篇
  1983年   99篇
  1982年   116篇
  1981年   105篇
  1980年   83篇
  1979年   36篇
  1978年   12篇
  1976年   12篇
  1974年   9篇
  1973年   7篇
  1972年   11篇
排序方式: 共有4921条查询结果,搜索用时 109 毫秒
31.
Summary The adult rat lung cytoplasm contains some factors which markedly stimulate adenylate cyclase activity in plasma membranes (Nijjar, M. S. Biochim. Biophys. Acta 584:43–50, 1979). Adenylate cyclase activator (ACA) was purified from rat lungs by DEAE-cellulose chromatography, preparative isoelectric focusing and by repeated high-performance liquid chromatography on a Sepharogel TSK 2000SW column. The final preparation showed about 200 fold purification in ACA activity over the original lung supernatant, and appeared to be homogeneous on the basis of its migration into a single band on SDS-polyacrylamide gel electrophoresis, and co-elution of ACA activity with protein from a gel exclusion column. ACA is an acidic (pl 4.8 ± 0.1), heat labile, monomeric protein of 40000 ± 2000 dalton molecular weight, and does not resemble calmodulin.  相似文献   
32.
The evolution of human speech and syntax, which appear to be the defining characteristics of modern human beings, is discussed. Speech depends on the morphology of the mouth, tongue, and larynx which yield the human «vocal tract», and neural mechanisms that facilitate the perception of speech and make possible the control of the articulatory gestures that underly speech. The neural mechanisms that underly human syntax may have derived by means of the Darwinian process of preadaption from the structures of the brain that first evolved to facilitate speech motor control. Recent data consistent with this theory are presented; deficits in the comprehension of syntax of normal aged people are correlated with a slowdown in speech rate.  相似文献   
33.
In hepatocytes obtained from hypothyroid rats, phorbol myristate acetate (PMA) and vasopressin diminished the accumulation of cyclic AMP and the stimulation of ureagenesis induced by isoprenaline or glucagon without altering significantly the accumulation of cyclic AMP induced by forskolin. Pretreatment with PMA markedly reduced the stimulation of ureagenesis and the accumulation of cyclic AMP induced by isoprenaline or glucagon. In membranes from cells pretreated with PMA, the stimulation of adenylate cyclase induced by isoprenaline + GTP, glucagon + GTP or by Gpp[NH]p were clearly diminished as compared to the control, whereas forskolin-stimulated activity was not affected. The data indicate heterologous desensitization of adenylate cyclase. It was also observed that the homologous (García-Sáinz J.A. and Michel, B. (1987) Biochem. J. 246, 331–336) and this heterologous β-adrenergic desensitizations were additive. Pertussis toxin treatment markedly reduced the heterologous desensitization of adenylate cyclase but not the homologous β-adrenergic desensitization. It is concluded that the homologous and heterologous desensitizations involve different mechanisms. The homologous desensitization seems to occur at the receptor level, whereas the heterologous probably involves the guanine nucleotide-binding regulatory protein, Ns.  相似文献   
34.
Poly(ADP-ribose) polymerase associated with free cytoplasmic messenger ribonucleoprotein particles (free mRNP particles) carrying messenger RNA has been characterized in rat brain. There were first-order kinetics for NAD with an apparent Km for NAD of 90.5 +/- 0.70 microM and Vmax of 19.7 +/- 2.8 pmol ADP-ribose incorporated min-1 mg protein-1. Five poly(ADP-ribose) protein acceptors were identified in the Mr 37,000-120,000 range. It is hypothesized that ADP-ribosylation of specific free mRNP proteins might play a role in the derepression and translation of the silent mRNAs of free mRNP particles.  相似文献   
35.
The in vitro effects of Li on agonist- and depolarization-stimulated accumulation of inositol phosphates were determined in mouse cerebral cortex slices. Of the agents examined, only the cholinergic agonist carbachol produced a significant accumulation of inositol tetrakisphosphate (InsP4) in the absence of Li. Lithium at 5 mM enhanced the accumulation of inositol monophosphate (InsP1) and inositol bisphosphate (InsP2) due to all the stimuli used and potentiated inositol trisphosphate (InsP3) accumulation due to histamine and noradrenaline, although at lower Li concentrations, carbachol-stimulated InsP3 accumulation was reduced. Li also enhanced InsP4 accumulation in the presence of noradrenaline, histamine, and elevated KCl level but, in marked contrast, reduced carbachol-stimulated InsP4 accumulation with an IC50 of 100 microM. There was a significant time delay between the initiation of carbachol stimulation and the beginning of the InsP4 inhibition due to Li. The phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate did not mimic the effects of Li. The results suggest that muscarinic receptor-mediated InsP4 production might be one of the targets for the therapeutic action of Li.  相似文献   
36.
Ingestion of large amounts of ammonium increases markedly the content of tubulin in brain. The effect on tubulin induction of ammonium ingestion for up to 100 days was investigated. Brain tubulin content showed a rapid initial increase (28%) at 2 days and reached 50% after 100 days on the diet. To discern if ammonia, the increase in urea synthesis, or both was responsible for tubulin induction, rats were maintained at several levels of uremia (by administering diets containing 0 to 80% protein) or in hyperammonemia (by urease treatment). Only ammonium administration in the diet and urease injection induced tubulin in brain. Tubulin was quantified in three different brain regions. There was a regional selectivity of tubulin induction by ammonia in rat brain. Whereas the cerebellum remained unaltered, the paleencephalon showed the highest increase, and the cerebral cortex exhibited only a modest increase.  相似文献   
37.
We report the first measurement of the free intracellular calcium level in an actively metabolising intact cerebral tissue preparation. To this end, we applied the recently developed 19F-nuclear magnetic resonance calcium chelator, 5,5'-F2-1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA), in superfused cerebral cortical slices to give values for the intracellular Ca2+ concentration of 350 and 480 nM, at external calcium concentrations of 1.2 and 2.4 mM, respectively. Under both conditions, the intracellular Ca2+ concentration was increased by depolarisation using a high external K+ concentration. Interleaved 31P spectra showed that the presence of the 5FBAPTA had a deleterious effect on the metabolic state of the tissue with an external Ca2+ concentration of 1.2 mM, but normal viability was maintained using 2.4 mM.  相似文献   
38.
Brain metabolism and intracellular pH were studied during and after episodes of incomplete cerebral ischaemia in lambs under sodium pentobarbitone anaesthesia. 31P and 1H magnetic resonance spectroscopy was used to monitor brain pHi and brain concentrations of inorganic phosphate (Pi), phosphocreatine (PCr), beta-nucleoside triphosphate (beta NTP), and lactate. Simultaneous measurements were made of arterio-cerebral venous concentration differences (AVDs) for oxygen, glucose, and lactate. Cerebral ischaemia was induced by a combination of bilateral carotid clamping and hypotension, and the acute effects of systemic administration of glucose and sodium bicarbonate were examined. The molar ratio of glucose to oxygen uptake by the brain (6G/O2) increased above unity during cerebral ischaemia. Statistically significant AVDs for lactate were not observed. Cerebral ischaemia was associated with a reduction in brain pHi PCr/Pi ratio, and an increase in brain lactate. No effect of arterial plasma glucose on brain lactate concentration or brain pHi was evident during cerebral ischaemia or in the postischaemic period. Administration of sodium bicarbonate systemically in the postischaemic period was associated with a rise in arterial and brain tissue PCO2. A fall in brain pHi occurred which was attributable in part to coincidental brain lactate accumulation. The increase in brain lactate measured by 1H nuclear magnetic resonance in vivo during ischaemia was insufficient to account for the change in buffer base calculated to have occurred from previous estimates of brain buffering capacity.  相似文献   
39.
Distribution of the Glucose-1,6-Bisphosphate System in Brain and Retina   总被引:2,自引:2,他引:0  
The distribution of glucose-1,6-bisphosphate (G16P2) synthase was measured in more than 70 regions of mouse brain, and nine layers of monkey retina. Activities in gray areas varied as much as 10-fold, in a hierarchical manner, from highest in telencephalon, especially the limbic system, to lowest in cerebellum, medulla, and spinal cord. The synthase levels were significantly correlated among different regions with G16P2 itself, as well as with previously published levels of a brain specific IMP-dependent G16P2 phosphatase. In contrast, neither G16P2 nor either its synthase or phosphatase correlated positively with phosphoglucomutase, and in all regions the G16P2 levels greatly exceeded requirements for activation of this mutase. This strengthens the view that G16P2 has some function besides serving as coenzyme for phosphoglucomutase. However, attempts to correlate the "G16P2 system," as defined by the three coordinately related elements, synthase, phosphatase, and G16P2, with other enzymes of carbohydrate metabolism, or with regional data of Sokoloff et al. [J. Neurochem. 28, 897-916 (1977)] for glucose consumption, were unsuccessful. This leaves open the possibility that brain G16P2 might serve as a phosphate donor for specific nonmetabolic effector proteins.  相似文献   
40.
The concentration requirements of calmodulin in altering basal, GTP-, and dopamine-stimulated adenylate cyclase activities in an EGTA-washed particulate fraction from bovine striatum were examined. In the bovine striatal particulate fraction, calmodulin activated basal adenylate cyclase activity 3.5-fold, with an EC50 of 110 nM. Calmodulin also potentiated the activation of adenylate cyclase by GTP by decreasing the EC50 for GTP from 303 +/- 56 nM to 60 +/- 10 nM. Calmodulin did not alter the maximal response to GTP. The EC50 for calmodulin in potentiating the GTP response was only 11 nM as compared to 110 nM for activation of basal activity. Similarly, calmodulin increased the maximal stimulation of adenylate cyclase by dopamine by 50-60%. The EC50 for calmodulin in eliciting this response was 35 nM. These data demonstrate that calmodulin can both activate basal adenylate cyclase and potentiate adenylate cyclase activities that involve the activating GTP-binding protein, Ns. Mechanisms that involve potentiation of Ns-mediated effects are much more sensitive to calmodulin than is the activation of basal adenylate cyclase activity. Potentiation of GTP-stimulated adenylate cyclase activity by calmodulin was apparent at 3 and 5 mM MgCl2, but not at 1 or 10 mM MgCl2. These data further support a role for calmodulin in hormonal signalling and suggest that calmodulin can regulate cyclic AMP formation by more than one mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号