首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3532篇
  免费   160篇
  国内免费   24篇
  3716篇
  2024年   11篇
  2023年   29篇
  2022年   36篇
  2021年   52篇
  2020年   65篇
  2019年   64篇
  2018年   60篇
  2017年   59篇
  2016年   54篇
  2015年   66篇
  2014年   140篇
  2013年   184篇
  2012年   109篇
  2011年   182篇
  2010年   91篇
  2009年   144篇
  2008年   179篇
  2007年   169篇
  2006年   156篇
  2005年   84篇
  2004年   104篇
  2003年   68篇
  2002年   42篇
  2001年   38篇
  2000年   59篇
  1999年   61篇
  1998年   71篇
  1997年   56篇
  1996年   55篇
  1995年   72篇
  1994年   82篇
  1993年   58篇
  1992年   86篇
  1991年   84篇
  1990年   67篇
  1989年   75篇
  1988年   69篇
  1987年   71篇
  1986年   66篇
  1985年   82篇
  1984年   77篇
  1983年   66篇
  1982年   87篇
  1981年   77篇
  1980年   49篇
  1976年   10篇
  1974年   6篇
  1973年   7篇
  1972年   11篇
  1970年   6篇
排序方式: 共有3716条查询结果,搜索用时 0 毫秒
71.
Abstract: The glutamine cycle has been proposed as a pathway in which glutamine synthesized in glia provides substrate for synthesis of the neurotransmitters glutamate and GABA as they are lost from neurons. To test whether GABA may regulate this pathway, the effect of elevated GABA on the glial enzyme glutamine synthetase was examined in rat brain. Repeated subcutaneous injections of the antiepileptic GABA transaminase inhibitor γ-vinylGABA at a dose of 150 mg/kg per day for 21 days reduced glutamine synthetase activity by 36% in the cortex and 22% in the cerebellum. At 30 mg/kg per day, glutamine synthetase activity was reduced by 9.5% in the cortex but unchanged in the cerebellum. The reductions were brain specific because the skeletal muscle and liver enzymes were unaffected by γ-vinylGABA administration. Amino acid analysis of the cortex from γ-vinylGABA-treated rats demonstrated a 270% increase in GABA levels after 150 mg/kg but no change after 30 mg/kg. GABA levels and glutamine synthetase activity were inversely correlated. The 150 mg/kg dose significantly lowered cortical glutamine and glutamate levels. The decline in brain glutamine synthetase activity with chronic γ-vinylGABA administration developed gradually over time and may be due to the slow turnover of this enzyme in vivo.  相似文献   
72.
Abstract: 6R-l -erythro-Tetrahydrobiopterin (6R-BH4) is a cofactor for aromatic l -amino acid hydroxylases and nitric oxide synthase. Recently, we have reported that independently of its cofactor activities, 6R-BH4 acts from the outside of neurons in the brain to enhance the release of monoamine neurotransmitters such as dopamine. To characterize the pharmacological properties of the action, we examined the effects of 6S-BH4, a diastereoisomer of 6R-BH4, on dopamine release in the rat striatum by using brain microdialysis and compared its effects with those of 6R-BH4. Perfusion of 6S-BH4 or 6R-BH4 through the dialysis probe increased extracellular dopamine levels (an index of in vivo dopamine release) concentration dependently; the maximal increase by 6S-BH4, was one-sixth of that by 6R-BH4. 6S-BH4 increased extracellular DOPA levels in the presence of NSD 1015, an inhibitor of aromatic l -amino acid decarboxylase (an index of in vivo tyrosine hydroxylase activity), to an extent similar to the increase induced by 6R-BH4. The increase in the DOPA levels induced by either of the pteridines was abolished after pretreatment of rats with α-methyl-p-tyrosine (an inhibitor of tyrosine hydroxylase). Under the same conditions, the 6S-BH4-induced dopamine release was abolished, but most of the 6R-BH4-induced increase persisted. Coadministration of 6S-BH4 with 6R-BH4 inhibited the increase in dopamine release induced by 6R-BH4 alone. These results show that 6R-BH4 stimulates dopamine release by acting at the specific recognition site on the neuronal membrane, and that 6S-BH4 acts as an antagonist of 6R-BH4 at this site, although it has cofactor activities.  相似文献   
73.
Synthesis of Serotonin in Traumatized Rat Brain   总被引:1,自引:0,他引:1  
Abstract: Previous studies have demonstrated that focal freezing lesions in rats cause a widespread decrease of cortical glucose use in the lesioned hemisphere and this was interpreted as a reflection of depression of cortical activity. The serotonergic neurotransmitter system was implicated in these alterations when it was shown that (1) cortical serotonin metabolism was increased widely in focally injured brain and (2) inhibition of serotonin synthesis prevented the development of cortical hypometabolism. In the present studies we applied an autoradiographic method that uses the accumulation of the 14C-labeled analogue of serotonin α-methylserotonin to assess changes in the rate of serotonin synthesis in injured brain. The results confirmed that 3 days after the lesion was made, at the time of greatest depression of glucose use, serotonin synthesis was significantly increased in cortical areas throughout the injured hemisphere. The increase was also seen in the dorsal hippocampus and area CA3, as well as in the medial geniculate and dorsal raphe, but not in any other subcortical structures including median raphe. Present results suggest that the functional changes in the cortex of the lesioned hemisphere are associated with an increased rate of serotonin synthesis mediated by activation of the dorsal raphe. We also documented by α-[14C]aminoisobutyric acid autoradiography that there was increased permeability of the blood-brain barrier, but this was restricted to the rim of the lesion.  相似文献   
74.
75.
Abstract: A newly established, sensitive, two-site enzyme-immunoassay system for brain-derived neurotrophic factor (BDNF) is described. Using this system, we investigated the tissue distribution of BDNF and developmental changes in tissue levels of BDNF in rats. The minimal limit of detection of the assay was 3 pg/0.2 ml of assay mixture. BDNF was successfully solubilized from tissues in the presence of guanidine hydrochloride but not in any of the other buffers examined. In the rat brain at 1 month of age, the highest level of BDNF was detected in the hippocampus (5.41 ng/g of wet weight), followed by the hypothalamus (4.23 ng/g) and the septum (1.68 ng/g). In other regions, levels of BDNF ranged between 0.9 and 1.7 ng/g. The level of BDNF in the posterior lobes of the cerebellum from rats at 30 days of age was slightly higher than that in the anterior lobes. The concentration of BDNF increased in all regions of the brain with postnatal development. In peripheral tissues, BDNF was found at very low concentrations (0.65 ng/g in the spleen, 0.21 ng/g in the thymus, and 0.06 ng/g in the liver). The subfractionation of the hippocampal homogenate indicated that ∼50% of BDNF was contained in the crude nuclear fraction. Immunoblots of BDNF-immunoreactive proteins extracted from the hippocampus, hypothalamus, and cerebellum contained doublet bands of protein of ∼14 kDa, a value close to the molecular mass of recombinant human BDNF. Immunocytochemical investigations showed that, in the hippocampus, BDNF was localized in the nucleus of the granule cells in the dentate gyrus and of the cells in the pyramidal cell layer. The frequency of cells that were stained in the dentate gyrus was greater than that of cells in the pyramidal cell layer.  相似文献   
76.
Abstract: Activation of the N -methyl- d -aspartate (NMDA) receptor has been implicated in the events leading to ischemia-induced neuronal cell death. Recent studies have indicated that the properties of the NMDA receptor channel may be regulated by tyrosine phosphorylation. We have therefore examined the effects of transient cerebral ischemia on the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B in different regions of the rat brain. Transient (15 min) global ischemia was produced by the four-vessel occlusion procedure. The tyrosine phosphorylation of NR2A and NR2B subunits was examined by immunoprecipitation with anti-tyrosine phosphate antibodies followed by immunoblotting with antibodies specific for NR2A or NR2B, and by immunoprecipitation with subunit-specific antibodies followed by immunoblotting with anti-phosphotyrosine antibodies. Transient ischemia followed by reperfusion induced large (23–29-fold relative to sham-operated controls), rapid (within 15 min of reperfusion), and sustained (for at least 24 h) increases in the tyrosine phosphorylation of NR2A and smaller increases in that of NR2B in the hippocampus. Ischemia-induced tyrosine phosphorylation of NR2 subunits in the hippocampus was higher than that of cortical and striatal NR2 subunits. The enhanced tyrosine phosphorylation of NR2A or NR2B may contribute to alterations in NMDA receptor function or in signaling pathways in the postischemic brain and may be related to pathogenic events leading to neuronal death.  相似文献   
77.
78.
The distribution of noradrenaline and adrenaline in the brain of the urodele amphibian Pleurodeles waltlii has been studied with antibodies raised against noradrenaline and the enzymes dopamine--hydroxylase and phenylethanolamine-N-methyltransferase. Noradrenaline-containing cell bodies were found in the anterior preoptic area, the hypothalamic nucleus of the periventricular organ, the locus coeruleus and in the solitary tract/area postrema complex at the level of the obex. Noradrenergic fibers are widely distributed throughout the brain innervating particularly the ventrolateral forebrain, the medial amygdala, the lateral part of the posterior tubercle, the parabrachial region and the ventrolateral rhombencephalic tegmentum. Putative adrenergic cell bodies were found immediately rostral to the obex, ventral to the solitary tract. Whereas the cell bodies and their dendrites were Golgi-like stained, axons were more difficult to trace. Nevertheless, some weakly immunoreactive fibers could be traced to the basal forebrain. A comparison of these results with data previously obtained in anurans reveals not only several general features, but also some remarkable species differences.Abbreviations Acc Nucleus accumbens - AP area postrema - Apl amygdala, pars lateralis - Apm amygdala, pars medialis - ca commissura anterior - Cb cerebellum - cc central canal - Dp dorsal pallium - epl external plexiform layer - gl glomerular layer of the olfactory bulb - H ganglion habenulae - igl internal granular layer - Ip nucleus interpeduncularis - Lc locus coeruleus - Ll lateral line lobe - Lp lateral pallium - Ls lateral septum - ml mitral cell layer - Mp medial pallium - Ms medial septum - nPT nucleus pretectalis - NPv nucleus of the periventricular organ - nV nervus trigeminus - oc optic chiasm - Poa preoptic area - Ri nucleus reticularis inferior - SC nucleus suprachiasmaticus - sol solitary tract - Str striatum - thd thalamus dorsalis - thv thalamus ventralis - To tectum opticum - TP tuberculum posterius - V ventricle - VH ventral hypothalamic nucleus - III nucleus nervi oculomotorii - IXm nucleus motorius nervi glossopharyngei - Xm nucleus motorius nervi vagi  相似文献   
79.
Changes with time after injury in behavioral deficits, as determined by the Morris swim test, and the in vivo specific binding of HEAT, a selective 1-adrenoreceptor ligand, were compared with the time-course of development of cortical hypometabolism in rats with focal freezing lesions. In our trauma model, cortical hypometabolism was detectable in the lesioned hemisphere at 4 hr, became maximal (50% of normal) at 3 days and diminished towards normal on days 5 and 10 post-injury. Progressive impairment of acquisition of the Morris water maze task was demonstrated up to day 3 post-lesion with improvement thereafter. On day 3 the latency to reach criterion was 60% longer in lesioned animals than in corresponding sham-operated ones. An increase in the volume of distribution of HEAT, limited to cortical areas of the lesioned hemisphere, was demonstrable at 4 hr post-lesion and reached its maximum on day 3 (200% of normal) with subsequent return toward normal on days 5 and 10. Several types of drugs were shown previously to modify the cortical hypometabolism associated with cerebral injury. The present data indicate that the same drugs also modify the in vivo binding of HEAT and the behavioral deficits induced by brain lesions. Ibuprofen, a non-steroidal anti-inflammatory drug, p-chlorophenylalanine, an inhibitor of serotonin synthesis, ketanserin, a specific 5HT2-receptor antagonist, and prazosin, an 1-adrenergic receptor blocker all normalized the in vivo binding of HEAT in the cortical areas of the lesioned hemisphere. All groups of animals treated with these drugs also showed subtle, but statistically highly significant improvements in latency to locate the platform in the Morris water maze. Taken together these results show good correlation between behavioral deficits, changes in 1-noradrenergic receptor binding and cortical hypometabolism in injured brain. This supports the hypothesis that post-injury cortical hypometabolism is a reflection of cortical functional depression in which both the serotonergic and noradrenergic neurotransmitter systems play a role, compatible with their inhibitory effects in the cortex and their postulated involvement in cortical information processing.Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   
80.
Wistar-derived rats were raised and maintained either on a normal- (25% casein) or on a low-protein (8% casein) diet until the age of 100 to 114 days. Both diets were isocaloric and contained an adequate supply of salts and vitamins. There were gross differences in body, brain and pituitary weight between the two groups. In addition, the brain and pituitary content of β-endorphin like immunoreactivity was lower in the protein malnourished rats, and three different forms of training (50 tone-footshock shuttle avoidance trials; 50 tones alone (habituation); 50 footshocks alone) caused a depletion of brain β-endorphin like immunoreactivity in the normal, but not in the malnourished rats. Footshock stimulation caused, in addition, a pituitary decrease and a plasma increase of β-endorphin like immunoreactivity, also restricted to the normal diet group. Performance in the habituation and in the shuttle avoidance tasks was similar in the two groups, despite the different responsiveness of their brain and pituitary β-endorphin systems to training and/or stimulation. In view of the possible involvement of these systems in learning suggested by these and by previous data, it seems likely that the neurohumoral regulation of habituation and avoidance learning may be different in rats submitted to protein malnutrition when compared to controls.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号