首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3525篇
  免费   161篇
  国内免费   24篇
  2024年   9篇
  2023年   27篇
  2022年   35篇
  2021年   52篇
  2020年   65篇
  2019年   64篇
  2018年   60篇
  2017年   58篇
  2016年   54篇
  2015年   66篇
  2014年   140篇
  2013年   184篇
  2012年   109篇
  2011年   182篇
  2010年   91篇
  2009年   144篇
  2008年   179篇
  2007年   169篇
  2006年   156篇
  2005年   84篇
  2004年   104篇
  2003年   68篇
  2002年   42篇
  2001年   38篇
  2000年   59篇
  1999年   61篇
  1998年   71篇
  1997年   56篇
  1996年   55篇
  1995年   72篇
  1994年   82篇
  1993年   58篇
  1992年   86篇
  1991年   84篇
  1990年   67篇
  1989年   75篇
  1988年   69篇
  1987年   71篇
  1986年   66篇
  1985年   82篇
  1984年   77篇
  1983年   66篇
  1982年   87篇
  1981年   77篇
  1980年   49篇
  1976年   10篇
  1974年   6篇
  1973年   7篇
  1972年   11篇
  1970年   6篇
排序方式: 共有3710条查询结果,搜索用时 31 毫秒
131.
This paper examines the distribution of fibers and cell bodies containing alpha-neo-endorphin in the cat brain stem by using an indirect immunoperoxidase technique. A high or moderate density of immunoreactive cell bodies was found in the superior central nucleus, nucleus incertus, dorsal tegmental nucleus, nucleus of the trapezoid body, and in the laminar spinal trigeminal nucleus, whereas a low density of such perikarya was observed in the inferior colliculus, nucleus praepositus hypoglossi, dorsal nucleus of the raphe, nucleus of the brachium of the inferior colliculus, and in the nucleus of the solitary tract. The highest density of immunoreactive fibers was found in the substantia nigra, dorsal motor nucleus of the vagus, nucleus coeruleus, lateral tegmental field, marginal nucleus of the brachium conjunctivum, and in the inferior and medial vestibular nuclei. These results indicate that alpha-neo-endorphin is widely distributed in the cat brain stem and suggest that the peptide could play an important role in several physiological functions, e.g., those involved in respiratory, cardiovascular, auditory, and motor mechanisms.  相似文献   
132.
为探讨八肽胆囊收缩素(CCk-8)和阿片肽相互作用的分子机理,利用抗体免疫沉淀技术研究了CCK-8与NDAP(k阿片受体激动剂)对大鼠脑(去皮层和小脑)和脊髓背柱组织Fos蛋白的影响。结果表明,0.1μmol/LCCK-8可显著刺激脑和脊髓组织中Fos蛋白增加(分别是对照组的3.8倍和3.6倍)。相同浓度的NDAP对Fos蛋白的生成亦有一定的诱导作用,分别是对照组的2.7倍和2.6倍。CCK-8和NDAP共同处理组织,Fos蛋白生成水平相似(脑)或高于(脊髓)CCK~-8单独诱导的水平。结果表明,CCK-8和NDAP均可直接诱导大鼠脑和脊髓组织c-fos的表达,它们对c-fos表达的相互作用在脑和脊髓中呈现不同的模式。  相似文献   
133.
Calcium is actively transported into intracellular organelles and out of the cytoplasm by Ca2+/Mg2+-ATPases located in the endoplasmic reticulum and plasma membranes. We studied the effects of aluminum on calcium transport in the adult rat brain. We examined 45Ca-uptake in microsomes and Ca2+-ATPase activity in microsomes and synaptosomes isolated from the frontal cortex and cerebellum of adult male Long-Evans rats. ATP-dependent45Ca-uptake was similar in microsomes from both brain regions. The addition of 50-800 μM AICI3 resulted in a concentration-dependent inhibition of 45Ca-uptake. Mg2+-dependent Ca2+-ATPase activity was significantly lower in synaptosomes compared to microsomes in both frontal cortex and cerebellum. In contrast to the uptake studies, AICI3 stimulated Mg2+-dependent Ca2+-ATPase activity in both microsomes and synaptosomes from both brain regions. To determine the relationship between aluminum and Mg2+, we measured ATPase activity in the presence of increasing concentrations of Mg2+ or AICI3. Maximal ATPase activity was obtained between 3 and 6 mM Mg2+. When we substituted AICI3 for Mg2+, ATPase activity was also stimulated in a concentration-dependent manner, but to a greater extent than with Mg2+. One interpretation of these data is that aluminum acts at multiple sites to displace both Mg2+ and Ca2+, increasing the activity of the Ca2+-ATPase, but disrupting transport of calcium.  相似文献   
134.
Abstract: We have shown previously that chronic hyperammonemia increases, in brain, the polymerization of microtubules that is regulated mainly by the level and state of phosphorylation of microtubule-associated protein 2 (MAP-2). Activation of the N -methyl- d -aspartate (NMDA) receptor dephosphorylates MAP-2. Because we have found that acute ammonia toxicity is mediated by the NMDA receptor, we have tested the effect of high ammonia levels on MAP-2 in brain. Microtubules isolated from rats injected intraperitoneally with 6 mmol/kg ammonium acetate showed a marked decrease of MAP-2. Also, the amount of MAP-2 in brain homogenates, determined by immunoblotting. was markedly reduced, presumably by proteolysis. The content of MAP-2 was decreased by ∼75% 1-2 h after ammonium injection and returned to normal values after 4 h. Proteolysis of MAP-2 was prevented completely by injection of 2 mg/kg MK-801, a specific antagonist of the NMDA receptor, suggesting that proteolysis is mediated by activation of this receptor. l -Carnitine, which protects rats against ammonia toxicity, also prevented MAP-2 degradation. Because activation of the NMDA receptor increases [Ca2+]i, we determined whether rat brain contains a Ca2+-dependent protease that selectively degrades MAP-2. We show that there is a cytosolic Ca2+-dependent protease that degrades MAP-2, but no other brain proteins. The protease has been identified tentatively as calpain I, for it is inhibited by a specific inhibitor of this protease. Our results suggest that ammonium injection activates the NMDA receptor, leading to an increase in [Ca2+]i, which activates calpain I. This, in turn, selectively degrades MAP-2. Possible implications in chronic hyperammonemic states and in the mechanism of ammonia toxicity are discussed.  相似文献   
135.
Abstract: The distribution of a novel calcium-binding protein with a molecular mass of 18 kDa (CBP-18) in the rat brain was studied by means of biochemical methods and immunohistochemistry on cryostat-sectioned tissue and compared with staining patterns of parvalbumin on adjacent sections. The biochemical analysis revealed high levels of CPB-18 in cortex and cerebellum, low levels in the lungs, and undetectable levels in all other tissues tested. Immunohistochemically, the polyclonal rabbit-derived antibody for CPB-18 showed selective affinity with periglomerular cells and dendrites in the olfactory bulb. Distinct immunostaining of scattered cells and their proximal dendrites was found in the anterior olfactory nuclei and in the perirhinal and entorhinal cortex. Strong staining of neuropil with recognizable but diffusely outlined cells was observed in the retrosplenial cortex, central amygdala, hippocampal rudiment, septum, area preoptica, hypothalamus, colliculus superior, and parabrachial nuclei. The cerebellum showed strong neuropil staining of both the molecular and the granule cell layer. Less intense neuropil staining and a few scattered cells were found in the neocortex, the remaining basal forebrain, and in the entire brainstem. Immunoreactivity was barely detectable or missing in the striatum, the hippocampus, the thalamus, and in the colliculus inferior. Thus, CPB-18 shows a unique staining pattern in the CNS, different from all other Ca2+-binding proteins studied so far.  相似文献   
136.
Abstract: A body of evidence has indicated that μ-opioid agonists can inhibit DNA synthesis in developing brain. We now report that K -selective opioid agonists (U69593 and U50488) modulate [3H]thymidine incorporation into DNA in fetal rat brain cell aggregates in a dose- and developmental stage-dependent manner. K agonists decreased thymidine incorporation by 35% in cultures grown for 7 days, and this process was reversed by the K -selective antagonist, norbinaltorphimine, whereas in 21-day brain cell aggregates a 3,5-fold increase was evident. Cell labeling by [3H]thymidine was also inhibited by the K -opioid agonist as shown by autoradiography. In addition, U69593 reduced basal rates of phosphoinositide formation in 7-day cultures and elevated it in 21-day cultures. Control levels were restored by norbin-altorphimine. Pertussis toxin blocked U69593-mediated inhibition of DNA synthesis. The action of K agonists on thymidine incorporation in the presence of chelerythrine, a protein kinase C (PKC) inhibitor, or in combination with LiCl, a noncompetitive inhibitor of inositol phosphatase, was attenuated in both 7- and 21-day cultures. These results suggest that K agonists may inhibit DNA synthesis via the phosphoinositide system with a pertussis toxin-sensitive G protein as transducer. In mixed glial cell aggregates, U50488 increased thymidine incorporation into DNA 3.1-fold, and this stimulation was reversed by the opioid antagonist naltrexone.  相似文献   
137.
Abstract: Ischemia-induced changes in 31P NMR relaxation were examined in 16 piglets. NMR spectra were acquired under control conditions and during complete cerebral ischemia induced via cardiac arrest. Changes in T 1 were assessed directly in six animals during control conditions and after 30–45 min of complete ischemia when changes in brain P1 levels had reached a plateau. The T 1 for P1 did not change, i.e., 2.3 ± 0.5 s during control conditions versus 2.4 ± 1.0 s during ischemia. To evaluate phosphocreatine and ATP, two types of spectra, with a long (25-s) or short (1-s) interpulse delay time, were collected during the first 10 min of ischemia (n = 10). Both types of spectra showed the same time course of changes in phosphocreatine and ATP levels, implying that the T 1 relaxation times do not change during ischemia. There were no changes in the linewidths of phosphocreatine, ATP, or P1 during ischemia, implying that the T *2 values remain constant. Our results suggest that the 31P T 1 and T *2 for phosphocreatine, Pi, and ATP do not change during ischemia, and therefore changes in 31P NMR peak intensity accurately reflect changes in metabolite concentrations.  相似文献   
138.
Polyamine Metabolism in Experimental Brain Tumors of Rat   总被引:3,自引:0,他引:3  
Abstract: Biosynthesis and accumulation of the polyamines putrescine, spermidine, and spermine are closely associated with cellular growth processes. We examined polyamine levels and the activity of their first rate-limiting enzyme, ornithine decarboxylase (ODC), in stereotactically induced experimental gliomas of the rat brain 1 and 2 weeks after implantation. Regional ODC activity and polyamine levels were determined in the tumor and in the ipsi- and contralateral striatum, white matter, and cerebral cortex. In the tumor, both ODC activity and polyamine levels markedly increased with progressive tumor growth, as compared to those in the white matter of the opposite hemisphere. In the peritumoral brain tissue, ODC activity did not change, but there was a marked increase of putrescine and, to a lesser degree, of spermidine and spermine almost throughout the whole ipsilateral hemisphere. ODC activity, therefore, seems to be a reliable marker of neoplastic growth in the brain, which may be of use for new clinical concepts of the diagnosis and therapy of brain tumors. The more diffuse distribution of polyamines, however, may be associated with the formation and spreading of edema, which would explain some of the biological effects of tumors on distant brain tissue.  相似文献   
139.
We have examined the nonparallel changes in tampanic membrane temperatures (T ty) from the two ears in response to various changes in body and head positions. Upon assuming a lateral recumbent position, the T ty on the lower side increased while that on the upper side decreased. Pressure application over a wide area of the lateral chest only caused inconsistent and obscure asymmetric changes in T ty. A lateral flexion of the head with the subject sitting upright and a rotation of the head to the side in a supine position induced an increase in the T ty on the lower side compared to that on the upper side. The temperature and blood flow of the forehead often decreased on the lower side and increased on the upper side, although such responses were not always concomitant with the asymmetric changes in T ty. A dorsal flexion of the head with the subject in a reclining position caused a slight increase in the T ty, whereas raising the head upright induced a slight decrease in them. Two additional experiments were carried out with single photon emission computed tomography using 99mTc-hexamethylpropyleneamine oxime as tracer, and a slight, relative decrease in counts was noted in the right hemisphere during rotation of the head to the right. These results would strongly suggest that unilateral increases and decreases in T ty could have been caused by one-sided decreases and increases, respectively, in blood flow to the brain and/or the tympanic membrane, induced by a vasomotor reflex involving vestibular stimulation.  相似文献   
140.
The distribution of immunoreactivity for histamine was studied in the brain of the urodele Triturus carnifex using the indirect immunofluorescence method. Histamine-immunoreactive cell bodies were localized in the caudal hypothalamus within the dorsolateral walls of the infundibular recesses. These immunoreactive cell bodies were pear-shaped, bipolar and frequently of the cerebrospinal-fluid-contacting type. Histaminergic nerve fibers were detected in almost all parts of the brain. Dense innervation was seen in the telencephalic medial pallium and ventral striatum, the neuropil of the preoptic area, the septum, the paraventricular organ, the posterior commissure, the caudal hypothalamus, the ventral and lateral mesencephalic tegmentum. Medium density innervation was observed in the lateral mesencephalic tegmentum and optic tectum. Poor innervation was present in the telencephalic dorsal pallium and in the central gray of the medulla oblongata. Few fibers occurred in the olfactory bulbs and in the telencephalic lateral pallium. Double immunofluorescence staining, using an antibody against tyrosine hydroxylase, showed that histamine-immunostained somata and those containing tyrosine-hydroxylase-like immunoreactivity were co-distributed in the tuberal hypothalamus. No co-occurrence of histamine-like and tyrosine hydroxylase-like immunostaining was seen in the same neuron. The pattern of histamine-immunoreactive neurons in the newt was similar to that described in other vertebrates. Our observations, carried out on the apparently simplified brain of the newt confirm that the basic histaminergic system is well conserved throughout vertebrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号