首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   5篇
  国内免费   5篇
  242篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   1篇
  2011年   2篇
  2010年   7篇
  2009年   3篇
  2008年   6篇
  2007年   10篇
  2006年   11篇
  2005年   3篇
  2004年   8篇
  2003年   12篇
  2002年   11篇
  2001年   9篇
  2000年   6篇
  1999年   9篇
  1998年   13篇
  1997年   12篇
  1996年   13篇
  1995年   5篇
  1994年   8篇
  1993年   9篇
  1992年   8篇
  1991年   11篇
  1990年   14篇
  1989年   10篇
  1988年   14篇
  1987年   5篇
  1986年   4篇
  1984年   1篇
  1983年   1篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
151.
The infection of Vigna subterranea (formerly Voandzeia subterranea) by Bradyrhizobium strain MAO 113 (isolated from V. subterranea) was examined by light and transmission electron microscopy. Bacteria accumulated on the epidermis close to root hairs, and subsequently entered the latter via infection threads. Most of the steps involved in nodule formation were generally characteristic of determinate nodules, such as those which form on the closely related V. radiata. For example, nodule meristems were induced beneath the root epidermis adjacent to infected root hairs, but prior to infection of the meristem by rhizobia. Moreover, after the infection of some of the meristematic cells by the infection threads, and the release of the rhizobia into membrane-bound vesicles, the infection process ceased and dissemination of the rhizobia was by division of already-infected host cells. However, there were some aspects of this process in V. subterranea which have been more commonly described in indeterminate nodules. These include long infection threads entering a number of cells within the meristems simultaneously and a matrix within infection threads which was strongly labelled with immunogold monoclonal antibodies, MAC236 and MAC265, which recognize epitopes on an intercellular glycoprotein. The MAC236 and MAC265 antibodies also recognized material in the unwalled infection droplets surrounding bacteria which were newly-released from the infection threads. The amount of labelling shown was more characteristic of the long infection threads seen in indeterminate nodules such as pea (Pisum sativum) and Neptunia plena. The structure of mature V. subterranea nodules was similar to that described for other determinate nodules such as Glycine max, Vigna unguiculata and V.radiata, i.e. they were spherical and the infected zone consisted of both infected and uninfected cells. Surrounding the infected tissue was an inner cortex of uninfected cell layers containing the putative components of an oxygen diffusion barrier (including glycoprotein-occluded intercellular spaces), and an outer cortex with cells containing calcium oxalate crystals.  相似文献   
152.
Characterization of populations of aerobic hydrogen-oxidizing soil bacteria   总被引:2,自引:0,他引:2  
Abstract Freshly isolated soil bacteria were screened for different characteristics of the H2 metabolism without prior selection for growth on H2. The bacteria were isolated from different grain size fractions of a neutral meadow cambisol and an acidic forest cambisol, and then tested (1) for the ability to oxidize H2, (2) for chemolithoautotrophic growth on H2 as sole electron donor and energy source, (3) for DNA-DNA-hybridization with two hydrogenase gene fragments from Alcaligenes eutrophus and Rhizobium leguminosarum , and (4) for reduction of 2,3,5-triphenyl-2H-tetrazoliumchloride (TTC) in the presence of H2. Many (65–90%) of the isolates were able to reduce TTC, but only 30–65% were actually able to oxidize H2 indicating that the TTC test was not a specific characteristic for H2 oxidation ability. The TTC test was only reliable in pure cultures of known bacteria with optimized test conditions, here shown for Alcaligenes eutrophus, Bradyrhizobium japonicum and Nocardia opaca , but not in mixed cultures of unknown bacteria. Still less (< 30%) of the isolates were able to grow chemolithoautotrophically indicating that culturable aerobic bacteria with the ability for H2 oxidation are more abundant than bacteria with the ability for chemolithoautotrophic growth. The DNA-DNA-hybridization test failed to detect many of the bacteria with H2 oxidation activity, probably since the hydrogenase genes present in the isolates were too diverse to be all detected by the DNA probes applied.  相似文献   
153.
We present an extended genetic analysis of the previously identified cycH locus in Bradyrhizobium japonicum. Three new open reading frames found in an operon-like structure immediately adjacent to the 3 end of cycH were termed cycJ, cycK and cycL. A deletion mutant (cycHJKL) and biochemical analysis of its phenotype showed that the genes of the cluster are essential for the biogenesis of cellular c-type cytochromes. Mutations in discrete regions of each of the genes were also constructed and shown to affect anaerobic respiration with nitrate and the ability to elicit an effective symbiosis with soybean, both phenotypes being a consequence of defects in cytochrome c formation. The CycK and CycL proteins share up to 53% identity in amino acid sequence with the Rhodobacter capsulatus Ccll and Cc12 proteins, respectively, which have been shown previously to be essential for cytochrome c biogenesis, where-as cycJ codes for a novel protein of 169 amino acids with an Mr of 17857. Localisation studies revealed that CycJ is located in the periplasmic space; it is probably anchored to the cytoplasmic membrane via an N-terminal hydrophobic domain. Based on several considerations discussed here, we suggest that the proteins encoded by the cycHJKL-cluster may be part of a cytochrome c-haem lyase complex whose active site faces the periplasm.  相似文献   
154.
The effect of rice culture on changes in the number of a strain of soybean root-nodule bacteria, (Bradyrhizobium japonicum CB1809), already established in the soil by growing inoculated soybean crops, was investigated in transitional red-brown earth soils at two sites in south-western New South Wales. At the first site, 5.5 years elapsed between the harvest of the last of four successive crops of soybean and the sowing of the next. In this period three crops of rice and one crop of triticale were sown and in the intervals between these crops, and after the crop of triticale, the land was fallowed. Before sowing the first rice crop, the number of Bradyrhizobium japonicum was 1.32×105 g–1 soil. The respective numbers of bradyrhizobia after the first, second and third rice crops were 4.52 ×104, 1.26×104 and 6.40×102 g–1 soil. In the following two years the population remained constant. Thus sufficient bradyrhizobia survived in soil to nodulate and allow N2-fixation by the succeeding soybean crop. At the second site, numbers of bradyrhizobia declined during a rice crop, but the decline was less than when the soil was fallowed (400-fold cf. 2200-fold). Multiplication of bradyrhizobia was rapid in the rhizosphere of soybean seedlings sown without inoculation in the rice bays. At 16 days after sowing, their numbers were not significantly different (p<0.05) from those in plots where rice had not been sown. Nodulation of soybeans was greatest in plots where rice had not been grown, but yield and grain nitrogen were not significantly different (p<0.05). Our results indicate that flooding soil has a deleterious effect on the survival of bradyrhizobia but, under the conditions of the experiments, sufficient B. japonicum strain CB 1809 survived to provide good nodulation after three crops of rice covering a total period of 5.5 years between crops of soybean.  相似文献   
155.
Inner membranes of Bradyrhizobium japonicum strain USDA 110 produced in vitro soluble and insoluble -(1–3),-(1–6) glucans. The reaction proceeded through a 90 kDa inner membrane intermediate protein; used UDP-glucose as sugar donor and required Mg2+. Gel chromatography of soluble glucans resolved a cyclic -(1–3) glucan with a degree of polymerization of eleven from a family of -(1–3),-(1–6) glucans with variable degree of polymerization higher than eleven. Bradyrhizobium strains BR4406 and BR8404 isolated from tree legume nodules in Southeast Brazil produce -(1–3),-(1–6) glucans very similar to that of B. japonicum. A 100 kDa protein was identified in these strains as intermediates in the synthesis of these glucans. Inner membranes of B. japonicum USDA110, B. japonicum I17, and Bradyrhizobium strains BR4406 and BR8404 incubated with UDP-glucose were unable to synthesize -(1–2) glucan and lacked the 235 kDa intermediate protein known to be involved in the synthesis of -(1–2) glucan in Agrobacterium tumefaciens, Rhizobium meliloti and Rhizobium loti.Abbreviations EPS= exopolysaccharides - CPS= capsular polysaccharides - LPS= lipopolysaccharides - AMA= Yeast extract-mannitol medium - TY= tryptone-yeast extract - PMSF= phenyl methyl sulfonil fluoride
  相似文献   
156.
The distribution of nodules of soybean (Glycine max (L.) Merr.) cultivar Bragg and the supernodulating mutant derivative nts382 was examined on the primary root relative to the first emerging lateral root, and on laterals relative to the base of the roots of plants grown in sand-vermiculite. Mutant nts382 nodulates profusely even in the presence of nitrate and appears defective in a systemic autoregulatory response that regulates nodule number in soybean. Nodules were clustered on primary roots about the first 4 cm down from the first emerging lateral root in both genotypes. Nodulation profiles showed reduced nodulation in younger and older regions of the primary root. Similarly, nodules appeared clustered close to the base of the lateral roots. Decreasing inoculum dose shifted nodule emergence to younger regions of the primary root and to lateral roots emerging in younger portions of the primary root. Our results indicate that the supernodulating mutant is able to regulate nodule number in both primary and lateral roots in the particulate matrix.  相似文献   
157.
Characterization of nodule growth and function, phosphorus and nitrogen status of plant tissues and host-plant growth of nodulated soybean ( Glycine max L. Merr.) plants developing and recovering from phosphorus deficiency was used to evaluate the role of phosphorus in symbiotic dinitrogen fixation. The sequence of physiological responses during recovery from phosphorus deficiency was; (1) rapid uptake of phosphorus, (2) rapid increases in the phosphorus concentration of leaves and nodules, (3) enhanced growth and function of nodules, (4) increased nitrogen concentrations in all plant organs and (5) enhanced plant growth. The sequence of physiological responses to onset of phosphorus deficiency was; (1) decreased phosphorus uptake, (2) decreased phosphorus concentrations in leaves and nodules, (3) decreased nodule function, (4) decreased nitrogen concentration in plant organs and (5) decreased plant growth. These results, in conjunction with previously published data (Sa and Israel, Plant Physiol. 97: 928–935, 1991), support an interpretation that the total response of symbiotic dinitrogen fixation in soybean plants to altered phosphorus supply is a function of both indirect effects on host-plant growth and more direct effects on the metabolic function of nodules.  相似文献   
158.
Bradyrhizobium japonicum possesses a mitochondria-like respiratory chain terminating with an aa 3-type cytochrome c oxidase. The gene for subunit I of this enzyme (coxA) had been identified and cloned previously via heterologous hybridization using a Paracoccus denitrificans DNA probe. In the course of these studies, another B. japonicum DNA region was discovered which apparently encoded a second terminal oxidase that was different from cytochrome aa 3 but also belonged to the superfamily of heme/copper oxidases. Nucleotide sequence analysis revealed a cluster of at least four genes, coxMNOP, organized most probably in an operon. The predicted coxM gene product shared significant similarity with subunit II of cytochrome c oxidases from other organisms: in particular, all of the proposed CuA ligands were conserved as well as three of the four acidic amino acid residues that might be involved in the binding of cytochrome c. The coxN gene encoded a polypeptide with about 40% sequence identity with subunit I representatives including the previously found CoxA protein: the six presumed histidine ligands of the prosthetic groups (two hemes and CuB) were strictly conserved. A remarkable feature of the DNA seqence was the presence of two genes, coxO and coxP, whose products were both homologous to subunit III proteins. A B.japonicum coxN mutant strain was created by marker exchange mutagenesis which, however, exhibited no obvious defects in free-living, aerobic growth or in root nodule symbiosis with soybean. This shows that the coxMNOP genes are not essential for respiration in the N2 fixing bacteroid.Abbreviations ORF open reading frame - TMPD N,N,N',N'-tetramethyl-p-phenylenediamine  相似文献   
159.
160.
The importance of soybean as a source of oil and protein, and its ability to grow symbiotically on low-N soils, point to its continued status as the most valuable grain legume in the world. With limited new land on which to expand, and emphasis on sustainable systems, increases in soybean production will come mostly from increased yield per unit area. Improvements in biological nitrogen fixation can help achieve increased soybean production, and this chapter discusses research and production strategies for such improvement.The soybean-Bradyrhizobium symbiosis can fix about 300 kg N ha-1 under good conditions. The factors which control the amount of N fixed include available soil N, genetic determinants of compatibility in both symbiotic partners and lack of other yield-limiting factors. Response to inoculation is controlled by the level of indigenous, competing bradyrhizobia, the N demand and yield potential of the host, and N availability in the soil.Research efforts to improve BNF are being applied to both microbe and soybean. While selection continues for effective, naturally occurring bradyrhizobia for inoculants and the use of improved inoculation techniques, genetic research on bradyrhizobia to improve effectiveness and competitiveness is advancing. Selection, mutagenesis and breeding of the host have focused on supernodulation, restricted nodulation of indigenous B. japonicum, and promiscuous nodulation with strains of bradyrhizobia from the cowpea cross-inoculation group. The research from the host side appears closer to being ready for practical use in the field.Existing knowledge and technology still has much to offer in improving biological nitrogen fixation in soybean. The use of high-quality inoculants, and education about their benefits and use can still make a significant contribution in many countries. The importance of using the best adapted soybean genotype with a fully compatible inoculant cannot be overlooked, and we need to address other crop management factors which influence yield potential and N demand, indirectly influencing nitrogen fixation. The implementation of proven approaches for improving nitrogen fixation in existing soybean production demands equal attention as received by research endeavours to make future improvements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号