首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   5篇
  国内免费   5篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   1篇
  2011年   2篇
  2010年   7篇
  2009年   3篇
  2008年   6篇
  2007年   10篇
  2006年   11篇
  2005年   3篇
  2004年   8篇
  2003年   12篇
  2002年   11篇
  2001年   9篇
  2000年   6篇
  1999年   9篇
  1998年   13篇
  1997年   12篇
  1996年   13篇
  1995年   5篇
  1994年   8篇
  1993年   9篇
  1992年   8篇
  1991年   11篇
  1990年   14篇
  1989年   10篇
  1988年   14篇
  1987年   5篇
  1986年   4篇
  1984年   1篇
  1983年   1篇
排序方式: 共有242条查询结果,搜索用时 171 毫秒
101.
Soybeans (Glycine max L.) are being introduced as a cash crop to small scale farmers in Zambia for rotation in their farming systems. The objectives of this study were to compare and select the most approriate non-fixing reference crop for estimating N2 fixation by soybeans and assess yields and N2 fixation of soybeans in Zambia. Nitrogen isotope dilution techniques using15N-labelled organic or inorganic materials were utilized. Two nonnodulating soybean cultivars, Clark RJ1 and N77 or in their absence Pearl millet (Panicum glaucum L.) were judged to be appropriate reference crops. A local soybean fixing cultivar (Glycine max L. cv. Magoye) rated highest among three cultivars tested for its ability to support symbiotic N2 fixation byB. japonicum under the experimental conditions. Values of percent N derived from atomosphere for this cultivar were in the order of 65 to 70%.deceased.Contribution no R531 of the Saskatchewan Institute of Pedology. Present address (REK): Esso Chemical Canada, P.O. Box 3010, Lethbridge, Alberta Canada T1J 4A9.  相似文献   
102.
103.
Aims: To reveal the effects of the O‐polysaccharide antigen of Bradyrhizobium japonicum LPS on biofilm formation and motility. Methods and Results: Wild type and O‐antigen‐deficient mutant strains of B. japonicum were tested for biofilm formation on polyvinyl chloride (PVC) surfaces and motility on semi‐solid (0·3%) agar media. After 7 days of incubation, the amount of biofilms formed by the mutant was c. 3·5‐fold greater than that of the wild type. Unlike biofilm formation, the motility assay revealed that the mutant strain was less motile than the wild type. Conclusions: This study shows enhanced biofilm formation and decreased motility by the O‐antigen‐deficient mutant, suggesting that the lack of the O‐polysaccharide of the rhizobial LPS is associated with biofilm‐forming ability and movement. Significance and Impact of the Study: LPS plays an important role in both pathogenic and beneficial bacteria. It has also been reported that LPS deficiency negatively affects biofilm formation. However, our results demonstrate that the O‐antigen‐deficient mutant enhances biofilm formation, presumably through a significant increase in hydrophobicity. It is notable that the hydrophobicity of cell walls might be a key regulator in controlling biofilm development in B. japonicum.  相似文献   
104.
An investigation was carried out to determine the diversity of 30 isolates of slow growing pigeonpea nodulating rhizobia based on variations in partial sequences of the 16S rRNA gene and numerical analysis of 80 phenotypic traits. Phylogenetic analysis using molecular sequences of 23 isolates showed that ARPE1 separated from the other isolates at an average distance of >14% divergence level. The other isolates were all within 5% divergence from each other but separated into four main groups, with group 1 containing 16 of the 23 isolates. Comparisons to sequences of reference strains revealed that the group 1 isolates were phylogenetically closely related to the slow growing soybean nodulating rhizobia belonging to Bradyrhizobium elkanii, although only three of these isolates were able to nodulate soybean. Numerical analysis of phenotypic data of 19 isolates showed that 14 isolates clustered together in one branch of the phenogram, which included the group 1, group 2 and group 4 isolates from the phylogenetic analysis. The group 3 isolates were highly variable in the phenogram with similarity levels lower than 50% among these isolates.  相似文献   
105.
Nod factors (Lipo-chitooligosaccharides, or LCOs) act as bacteria-to-plant signal molecules that modulate early events of the Bradyrhizobium-soybean symbiosis. It is known that low root zone temperature inhibits the early stages of this symbiosis; however, the effect of low soil temperature on bacteria-to-plant signaling is largely uninvestigated. We evaluated the effect of low growth temperatures on the production kinetics of Nod factor (LCO) by B. japonicum. Two strains of B. japonicum, 532C and USDA110, were tested for ability to synthesize Nod Bj-V (C(18:1), MeFuc) at three growth temperatures (15, 17 and 28 degrees C). The greatest amounts of the major Nod factor, Nod Bj-V (C(18:1), MeFuc), were produced at 28 degrees C for both strains. At 17 and 15 degrees C, the Nod factor production efficiency, per cell, of B. japonicum 532C and USDA110 was markedly decreased with the lowest Nod factor concentration per cell occurring at 15 degrees C. Strain 532C was more efficient at Nod factor production per cell than strain USDA 110 at all growth temperatures. The biological activity of the extracted Nod factor was unaffected by culture temperature. This study constitutes the first demonstration of reduced Nod factor production efficiency (per cell production) under reduced temperatures, suggesting another way that lower temperatures inhibit establishment of the soybean N(2) fixing symbiosis.  相似文献   
106.
Sarma AD  Emerich DW 《Proteomics》2006,6(10):3008-3028
Total protein extract of Bradyrhizobium japonicum cultivated in HM media were resolved by 2-D PAGE using narrow range IPG strips. More than 1200 proteins were detected, of which nearly 500 proteins were analysed by MALDI-TOF and 310 spots were tentatively identified. The present study describes at the proteome level a significant number of metabolic pathways related to important cellular events in free-living B. japonicum. A comparative analysis of proteomes of free-living and nodule residing bacteria revealed major differences and similarities between the two states. Proteins related to fatty acid, nucleic acid and cell surface synthesis were significantly higher in cultured cells. Nitrogen metabolism was more pronounced in bacteroids whereas carbon metabolism was similar in both states. Relative percentage of proteins related to global functions like protein synthesis, maturation & degradation and membrane transporters were similar in both forms, however, different proteins provided these functions in the two states.  相似文献   
107.
108.
Bradyrhizobium japonicum 532C nodulates soybean effectively under cool Canadian spring conditions and is used in Canadian commercial inoculants. The major lipo-chitooligosaccharide (LCO), bacteria-to-plant signal was characterized by HPLC, FAB-mass spectroscopy MALDI-TOF mass spectroscopy and revealed to be LCO Nod Bj-V (C18:1, MeFuc). This LCO is produced by type I strains of B. japonicum and is therefore unlikely to account for this strains superior ability to nodulate soybean under Canadian conditions. We also found that use of yeast extract mannitol medium gave similar results to that of Bergerson minimal medium.  相似文献   
109.
A total of fifty root nodules isolates of fast-growing and slow growing rhizobia from Pterocarpus ennaceus and Pterocarpus lucens respectively native of sudanean and sahelian regions of Senegal were characterized. These isolates were compared to representative strains of known rhizobial species. Twenty-two new isolates were slow growers and twenty-eight were fast growers. A polyphasic approach was performed including comparative total protein sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) profile analysis; 16S rDNA and 16S-23S rDNA intergenic spacer (IGS) sequence analysis. By SDS-PAGE the slow growing isolates grouped in one major cluster containing reference strains of Bradyrhizobium sp. including strains isolated in Africa, in Brazil and in New Zealand. Most of the fast-growing rhizobia grouped in four different clusters or were separate strains related to Rhizobium and Mesorhizobium strains. The 16S rDNA and 16S-23S rDNA IGS sequences analysis showed accurately the differentiation of fast growing rhizobia among the Rhizobium and Mesorbizobium genospecies. The representative strains of slow growing rhizobia were identified as closely related to Bradyrbizobium elkanii and Bradyrhizobium japonicum. Based on 16S rDNA sequence analysis, one slow growing strain (ORS199) was phylogenetically related to Bradyrbizobium sp. (Lupinus) and Blastobacter denitrificans. This position of ORS 199 was not confirmed by IGS sequence divergence. We found no clear relation between the diversity of strains, the host plants and the ecogeographical origins.  相似文献   
110.
Chuiko  N. V.  Antonyuk  T. S.  Kurdish  I. K. 《Microbiology》2002,71(4):391-396
The investigation of the chemotactic response of Bradyrhizobium japonicum to amino acids, carbohydrates, multiatomic alcohols, organic acids, and soybean extracts showed that the extracts of some soybean varieties (Chernoburaya and Beskluben'kovaya) contain repellents. This indicates that the soybeans of host plants contain effectors that may play a role at the early stages of their interaction with nodule bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号