首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2930篇
  免费   242篇
  国内免费   67篇
  2023年   47篇
  2022年   67篇
  2021年   85篇
  2020年   61篇
  2019年   88篇
  2018年   61篇
  2017年   60篇
  2016年   63篇
  2015年   84篇
  2014年   121篇
  2013年   156篇
  2012年   76篇
  2011年   99篇
  2010年   65篇
  2009年   106篇
  2008年   128篇
  2007年   92篇
  2006年   102篇
  2005年   79篇
  2004年   94篇
  2003年   78篇
  2002年   76篇
  2001年   83篇
  2000年   69篇
  1999年   56篇
  1998年   85篇
  1997年   56篇
  1996年   65篇
  1995年   70篇
  1994年   68篇
  1993年   63篇
  1992年   68篇
  1991年   56篇
  1990年   53篇
  1989年   40篇
  1988年   48篇
  1987年   48篇
  1986年   47篇
  1985年   71篇
  1984年   37篇
  1983年   42篇
  1982年   52篇
  1981年   33篇
  1980年   26篇
  1979年   17篇
  1978年   19篇
  1977年   12篇
  1976年   10篇
  1973年   12篇
  1972年   15篇
排序方式: 共有3239条查询结果,搜索用时 234 毫秒
81.
Neurotrophins were originally identified by their ability to promote the survival of developing neurons. However, recent work on these proteins indicates that they may also influence the proliferation and differentiation of neuron progenitor cells and regular several differentiated traits of neurons throughout life. Moreover, the effects of neurotrophins on survival have turned out to be more complex than originally thought. Some neurons switch their survival requirements from one set of neurotrophins to another during development, and several neurotrophins may be involved in regulating the survival of a population of neurons at any one time. Much of our understanding of the developmental physiology of neurotrophins has come from studying neurons of the peripheral nervous system. Because these neurons and their progenitors are segregated into anatomically discrete sites, it has been possible to obtain these cell for in vitro experimental studies from the earliest stage of their development. The recent generation of mice having null mutations in the neurotrophin and neurotrophin receptor genes has opened up an unparalleled opportunity to assess the physiological relevance of the wealth of data obtained from these in vitro studies. Here I provide a chronological account of the effects of members of the NGF family of neurotrophins on cells of the neural lineage with special reference to the peripheral nervous system. 1994 John Wiley & Sons, Inc.  相似文献   
82.
83.
大鼠食管胸段和腹段壁内乙酰胆碱酯酶(AChE)阳性神经存在于神经束和分支的粗细神经纤维内,也见于外膜丛,肌间丛,粘膜下丛和粘膜肌内。食管肌层内AChE阳性神经纤维多而密集,而食管腹段肌内尤为丰富,肌间神经纤维末梢分布于肌束表面,可能与控制肌纤维活动有关;分布于肌内,粘膜下层和上皮基部的AChE阳性神经中,尚含有内脏感觉神经纤维。食管壁的肌间丛和粘膜下丛内散在有多极形和卵园形的AChE阳性神经元,在食管腹段内数多,而以中小型神经元为主。  相似文献   
84.
The ability of parthenogenetically activated mouse eggs to establish a plasma membrane (PM) block to sperm penetration was studied. Zona-free eggs preloaded with Hoechst 33342 were activated by exposure to ethanol or OAG (1-oleoyl-2-acetyl-sn-glycerol) and inseminated after different periods. Eggs challenged with sperm at 30- or 60-min postactivation displayed a fertilization frequency significantly lower than that of control eggs. Conversely, when insemination was carried out at 120-min postactivation, the proportion of fertilized eggs was equivalent to that observed in the control group. Moreover, we report that when the eggs were induced to resume meiosis without any notable loss of CGs (egg exposure to OAG at 100 μM external Ca2+ or to heat shock), a normal ability to be penetrated was recorded at 30-min postactivation. Similar behaviour was exhibited by eggs that underwent a CG exocytosis close to that triggered by sperm in absence of nuclear activation (microinjection of inositol 1,4,5-trisphosphate into the egg at 1 μM cytosolic concentration). Present data support the conclusion that parthenogenetically activated mouse eggs are capable of a transitory PM block response that requires both CG exocytosis and meiosis resumption to occur. © 1994 Wiley-Liss, Inc.  相似文献   
85.
Basis for Phospholipid Incorporation into Peripheral Nerve Myelin   总被引:1,自引:1,他引:0  
Abstract: To characterize the mechanism(s) for targeting of phospholipids to peripheral nerve myelin, we examined the kinetics of incorporation of tritiated choline-, glycerol-, and ethanolamine-labeled phospholipids into four subfractions: microsomes, mitochondria, myelin-like material, and purified myelin at 1, 6, and 24 h after precursors were injected into sciatic nerves of 23–24-day-old rats. As validation of the fractionation scheme, a lag (> 1 h) in the accumulation of labeled phospholipids in the myelin-containing subfractions was found. This lag signifies the time between synthesis on organelles in Schwann cell cytoplasm and transport to myelin. In the present study, we find that sphingomyelin (choline-labeled) accumulated in myelin-rich subfractions only at 6 and 24 h, whereas phosphatidylserine (glycerol-labeled) and plasmalogen (ethanolamine-labeled) accumulated in the myelin-rich fractions by 1 h. The later phospholipids accumulate preferentially in the myelin-like fraction. These results are consistent with the notion that the targeting of sphingomyelin, a lipid present in the outer myelin leaflet, is different from the targeting of phosphatidylserine and ethanolamine plasmalogen, lipids in the inner leaflet. These findings are discussed in light of the possibility that sphingomyelin targeting is Golgi apparatus based, whereas phosphatidylserine and ethanolamine plasmalogen use a more direct transport system. Furthermore, the routes of phospholipid targeting mimic routes taken by myelin proteins P0 (Golgi) and myelin basic proteins (more direct).  相似文献   
86.
Abstract: Laminin A, B1, and B2 chain mRNA levels in degenerating and regenerating mouse sciatic nerves were examined using northern blot analysis. In normal intact nerves, B1 and B2 mRNA steady-state levels were high, but when the nerves were crushed, the steady-state levels of B1 and B2 mRNA per milligram wet tissue weight of the distal segments of the nerves increased five- to eightfold over that of control levels as the total RNA and β-actin mRNA levels increased, suggesting that these increases were the consequence of Schwann cell proliferation after axotomy. When the steady-state levels of B1 and B2 mRNA were normalized as the ratio to total RNA or β-actin mRNA levels, however, they drastically decreased to about 20% of the normal nerve levels in the nerve segments distal to both the crush and transaction sites 1 day after injury. In the crushed nerves, B1 and B2 mRNA levels gradually increased as the regenerating nerves arrived at the distal segments and reestablished normal axon–Schwann cell contact, and then returned to normal levels on the 21 st day. In the transected nerves, where Schwann cells continued to be disconnected from axons, both B1 and B2 mRNA levels remained low. Cultured Schwann cells expressed detectable levels of B1 and B2 chain mRNA which significantly increased when the cells were cocultured with sensory neurons. However, mRNA for A chain was not detectable in the normal, axotomized nerves or in cultured Schwann cells. These data indicate that Schwann cells express laminin B1 and B2 chain mRNA that are up-regulated by axonal or neuronal contact, but they do not express A chain mRNA.  相似文献   
87.
The activation by abscisic acid (ABA) of current through outward-rectifying K+ channels and its dependence on cytoplasmic pH (pHi) was examined in stomatal guard cells of Vicia faba L. Intact guard cells were impaled with multibarrelled and H+-selective microelectrodes to record membrane potentials and pHi during exposures to ABA and the weak acid butyrate. Potassium channel currents were monitored under voltage clamp and, in some experiments, guard cells were loaded with pH buffers by iontophoresis to suppress changes in pHi. Following impalements, stable pHi values ranged between 7.53 and 7.81 (7.67±0.04, n = 17). On adding 20 M ABA, pHi rose over periods of 5–8 min to values 0.27±0.03 pH units above the pHi before ABA addition, and declined slowly thereafter. Concurrent voltage-clamp measurements showed a parallel rise in the outward-rectifying K+ channel current (IK, out) and, once evoked, both pHi and IK, out responses were unaffected by ABA washout. Acid loads, imposed with external butyrate, abolished the ABA-evoked rise in IK, out. Butyrate concentrations of 10 and 30 mM (pH0 6.1) caused pHi to fall to values near 7.0 and below, both before and after adding ABA, consistent with a cytoplasmic buffer capacity of 128±12 mM per pH unit (n = 10) near neutrality. Butyrate washout was characterised by an appreciable alkaline overshoot in pHi and concomitant swell in the steady-state conductance of IK, out. The rise in pHi and iK, out in ABA were also virtually eliminated when guard cells were first loaded with pH buffers to raise the cytoplasmic buffer capacity four- to sixfold; however, buffer loading was without appreciable effect on the ABA-evoked inactivation of a second, inward-rectifying class of K+ channels (IK, in). The pHi dependence of IK, out was consistent with a cooperative binding of at least 2H+ (apparent pKa = 8.3) to achieve a voltage-independent block of the channel. These results establish a causal link previously implicated between cytoplasmic alkalinisation and the activation of IK, out in ABA and, thus, affirm a role for H+ in signalling and transport control in plants distinct from its function as a substrate in H+-coupled transport. Additional evidence implicates a coordinate control of IK, in by cytoplasmic-free [Ca2+] and pHi.Abbreviations ABA abscisic acid - [Ca2+]i cytoplasmic free [Ca2+]i - EK K+ equilibrium potential - IK, out, IK, in outward-, inward-rectifying K+ channel (current) - I-V current-voltage (relation) - Mes 2-(N-morpholino)ethanesulfonic acid - pHi cytoplasmic pH - Tes 2-{[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-amino}ethanesulfonic acid - Vm membrane potential We are grateful to G. Thiel (Pflanzenphysiologisches Institut, Universität Göttingen, Germany) for helpful discussions. This work was possible with equipment grants-in-aid from the Gatsby Charitable Foundation, the Royal Society and the University of London Central Research Fund. F.A. holds a Sainsbury Studentship.  相似文献   
88.
Posttranslational modification of proteins by arginine and lysine has been demonstrated in crude extracts of vertebrate nerves and brain but not in intact cells. In the present experiments we have exploited the fact that Arg is added posttranslationally only at the N-terminus of target proteins, to demonstrate these reactions in intact cells of sciatic nerves and embryonic brains of rats. Sciatic nerves were crushed in anaesthesized rats and 2 hrs later segments of nerve, including the site of the crush, were removed and incubated in media containing [3H]Arg. Incorporation of [3H]Arg into total proteins was analyzed by acid precipitation and the presence of label at the N-terminus was determined by a modification of the Edman degradation procedure. Approximately 25% of protein bound [3H]Arg was released from the N-terminus by the Edman reaction indicating that it was added posttranslationally rather than through protein synthesis. N-terminal labeling was not detectable in nerves not crushed prior to explant and incubation. Slices of embryonic day 20 visual cortex, when incubated under similar conditions as injured sciatic nerves, also showed approximately 25% of the protein incorporated [3H]Arg at the N-terminus, while arginylation was not detectable in adult rat brain slices. Since Lys is not added posttranslationally to the N-terminus, we have attempted to observe lysylation of proteins in intact cells by using cycloheximide (Cx) to block protein synthesis without interfering with protein modification. The posttranslational incorporation of Arg/Lys into proteins was found to be insensitive to up to 2.0 mM Cx in tissue extracts (in vitro). However, in intact cells, doses as low as 10 uM Cx completely inhibited the incorporation of [3H]Arg/Lys into proteins. One uM Cx allowed for some incorporation of [3H]Arg/Lys into protein and approximately 40% of the Cx insensitive Arg was incorporated into the N-terminal. These results show that in vivo but not in vitro, Cx can block protein modification, suggesting that either in intact cells protein modification requires protein synthesis, or that Cx has effects other than as an inhibitor of protein synthesis on cells in culture, effects that it does not have on the partially purified components of the reaction.  相似文献   
89.
Synopsis Immunoreactive (ir) gonadotropin-releasing hormone (GnRH) is localized in many neurons of the terminal nerve (TN) and midbrain tegmentum, while few ir-cells are observed in the preoptic area and ventral hypothalamus. The paucity of preoptic ir-cells may relate to an unusual feature of the elasmobranch pituitary, i.e. a lack of portal control of gonadotropin-producing cells. TN and midbrain GnRH-ir neurons may be major sources of GnRH used to modulate or otherwise control both pituitary and brain cells via delivery through the systemic circulation. These ir-nuclei also appear to directly innervate CNS regions (the preoptic area, habenula and clasper control area of the spinal cord) involved in sexual functions. Important regulatory mechanisms, represented by interactions between GnRH pathways and sex-steroid concentrating neurons, are likely to occur in the preoptic area, habenula and midbrain tegmentum.  相似文献   
90.
A series of six chimeric proteins, composed of fragments corresponding to either one or the other of the growth factor-associated mouse glandular kallikreins-epidermal growth factor binding protein (EGF-BP) and the gamma-subunit of nerve growth factor (gamma-NGF)--were expressed in Escherichia coli and isolated, and their kinetic properties were characterized. The assembly of these synthetic proteases involved the substitution of regions of the proteins containing four specific surface loops that have been postulated to influence both kinetic specificity and the formation of growth factor complexes. The substrates utilized in the kinetic characterization of these chimeric kallikreins were tripeptide nitroanilides representing carboxyl termini of both the EGF and beta-NGF mature hormones, putative processing sites for these kallikreins in the precursors. Characterization of these hybrid enzymes demonstrates that Km and kcat kinetic constants may be independently affected by the regions utilized in construction of these chimeric kallikreins. Specifically, loop 1, located in the amino terminal region (Bode, W., et al., J. Mol. Biol. 164, 237-282, 1983), in gamma-NGF enhanced the kcat for substrates containing threonine in the P2 position, as is the case during the processing of the carboxy terminus of the beta-NGF precursor. Also, the central regions of the kallikreins containing loop 2 and the kallikrein loop dictated the generally inverted Km and kcat kinetic constants observed between EGF-BP and gamma-NGF. Finally, in gamma-NGF the autolysis loop, found in the carboxyl terminal region, functions to lower the Km kinetic constant for a variety of substrates. The results allow previously characterized kinetic differences between EGF-BP and gamma-NGF to be interpreted in terms of specific regions of the proteins and identify a subset of amino acid positions responsible for these functional characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号