首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5083篇
  免费   109篇
  国内免费   23篇
  2024年   33篇
  2023年   353篇
  2022年   228篇
  2021年   276篇
  2020年   372篇
  2019年   464篇
  2018年   444篇
  2017年   316篇
  2016年   369篇
  2015年   219篇
  2014年   478篇
  2013年   932篇
  2012年   60篇
  2011年   69篇
  2010年   56篇
  2009年   37篇
  2008年   40篇
  2007年   36篇
  2006年   21篇
  2005年   62篇
  2004年   41篇
  2003年   41篇
  2002年   32篇
  2001年   15篇
  2000年   15篇
  1999年   12篇
  1998年   13篇
  1997年   12篇
  1996年   6篇
  1995年   5篇
  1994年   7篇
  1993年   3篇
  1992年   2篇
  1989年   2篇
  1986年   5篇
  1985年   14篇
  1984年   22篇
  1983年   22篇
  1982年   12篇
  1981年   9篇
  1980年   10篇
  1979年   11篇
  1978年   7篇
  1977年   11篇
  1976年   4篇
  1975年   5篇
  1974年   6篇
  1973年   3篇
  1972年   1篇
  1956年   1篇
排序方式: 共有5215条查询结果,搜索用时 46 毫秒
991.
Many intrinsically disordered proteins switch between unfolded and folded-like forms in the presence of their binding partner. The possibility of a pre-equilibrium between the two macrostates is challenging to discern given the complex conformational landscape. Here, we show that CytR, a disordered DNA-binding domain, samples a folded-like excited state in its native ensemble through equilibrium multi-probe spectroscopy, kinetics and an Ising-like statistical mechanical model. The population of the excited state increases upon stabilization of the native ensemble with an osmolyte, while decreasing with increasing temperatures. A conserved proline residue, the mutation of which weakens the binding affinity to the target promoter, is found to uniquely control the population of the minor excited state. Semi-quantitative statistical mechanical modeling reveals that the conformational diffusion coefficient of disordered CytR is an order of magnitude slower than the estimates from folded domains. The osmolyte and proline mutation smoothen and roughen up the landscape, respectively, apart from modulation of populations. Our work uncovers general strategies to probe for excited structured states in disordered ensembles, and to measure and modulate the roughness of the disordered landscapes, inter-conversion rates of species and their populations.  相似文献   
992.
993.
ObjectivesTo describe immunological consequences induced by cryoablation against H22 cells in vivo.MethodsAdult BALB/c mice underwent subcutaneous implantation of H22 cells. All of them were assigned into three groups randomly: group A (false surgery), group B (cryoablation) and group C (cryoablation plus Freund's adjuvant). Animals were sacrificed 1, 2 and 3 weeks after treatment. Serum IFN-γ and IL-4, Th1/Th2 in spleens and cytotoxicity were detected.ResultsCompared with that of group A, (1) INF-γ of group B was higher, but IL-4 was lower; cryoablation plus Freund's adjuvant enhanced these effects. (2) Th1/Th2 rose significantly in both group B and group C. (3) Strong cytolytic activity against H22 cells of group B and group C was found on day 7, 14 and 21.ConclusionsOur study showed a marked shift toward Th1 and IFN-γ expression after cryoablation, with an immuno-stimulatory effect against murine H22 hepatoma Cell.  相似文献   
994.
995.
Cisplatin (cis-diamminedichloroplatinum) is a common chemotherapeutic drug that reacts with the N7 atoms of adjacent guanines in DNA to form the Pt-1,2-d(GpG) intrastrand cross-link (Pt-GG), a major product to block DNA replication. Translesion DNA synthesis has been implicated in chemoresistance during cisplatin treatment of cancer due to Pt-GG lesion bypass. Gene knockdown studies in human cells have indicated a role for polκ during translesion synthesis of the Pt-GG lesion. However, the bypass activity of polκ with cisplatin lesions has not been well characterized. In this study, we investigated polκ's ability to bypass Pt-GG lesion in vitro and determined two crystal structures of polκ in complex with Pt-GG DNA. The ternary complex structures represent two consecutive stages of lesion bypass: nucleotide insertion opposite the 5′G (Pt-GG2) and primer extension immediately after the lesion (Pt-GG3). Our biochemical data showed that polκ is very efficient and accurate in extending DNA primers after the first G of the Pt-GG lesion. The structures demonstrate that the efficiency and accuracy is achieved by stably accommodating the bases with the cisplatin adduct in the active site for proper Watson–Crick base pairing with the incoming nucleotide in both the second insertion and post-insertion complexes. Our studies suggest that polκ works as an extender for efficient replication of the Pt-GG lesion in cells. This work holds promise for considering polκ, along with polη, as potential targets for drug design, which together could improve the efficacy of cisplatin treatment for cancer therapy.  相似文献   
996.
The translationally controlled tumor protein (TCTP) is a multifunctional protein that may interact with many other biomolecules, including itself. The experimental determinations of TCTP structure revealed a folded core domain and an intrinsically disordered region, which includes the first highly conserved TCTP signature, but whose role in the protein functions remains to be elucidated. In this work, we combined NMR experiments and MD simulations to characterize the conformational ensemble of the TCTP intrinsically disordered loop, in the presence or not of calcium ions and with or without the phosphorylation of Ser46 and Ser64. Our results show that these changes in the TCTP electrostatic conditions induce significant shifts of its conformational ensemble toward structures more or less extended in which the disordered loop is pulled away or folded against the core domain. Particularly, these conditions impact the transient contacts between the two highly conserved signatures of the protein. Moreover, both experimental and theoretical data show that the interface of the non-covalent TCTP dimerization involves its second signature which suggests that this region might be involved in protein–protein interaction. We also show that calcium hampers the formation of TCTP dimers, likely by favoring the competitive binding of the disordered loop to the dimerization interface. All together, we propose that the TCTP intrinsically disordered region is involved in remodeling the core domain surface to modulate its accessibility to its partners in response to a variety of cellular conditions.  相似文献   
997.
Much of our knowledge on the function of proteins is deduced from their mature, folded states. However, it is unknown whether partially synthesized nascent protein segments can execute biological functions during translation and whether their premature folding states matter. A recent observation that a nascent chain performs a distinct function, co-translational targeting in vivo, has been made with the Escherichia coli signal recognition particle receptor FtsY, a major player in the conserved pathway of membrane protein biogenesis. FtsY functions as a membrane-associated entity, but very little is known about the mode of its targeting to the membrane. Here we investigated the underlying structural mechanism of the co-translational FtsY targeting to the membrane. Our results show that helices N2–4, which mediate membrane targeting, form a stable folding intermediate co-translationally that greatly differs from its fold in the mature FtsY. These results thus resolve a long-standing mystery of how the receptor targets the membrane even when deleted of its alleged membrane targeting sequence. The structurally distinct targeting determinant of FtsY exists only co-translationally. Our studies will facilitate further efforts to seek cellular factors required for proper targeting and association of FtsY with the membrane. Moreover, the results offer a hallmark example for how co-translational nascent intermediates may dictate biological functions.  相似文献   
998.
Biomolecular condensates are two- and three-dimensional compartments in eukaryotic cells that concentrate specific collections of molecules without an encapsulating membrane. Many condensates behave as dynamic liquids and appear to form through liquid–liquid phase separation driven by weak, multivalent interactions between macromolecules. In this review, we discuss current models and data regarding the control of condensate composition, and we describe our current understanding of the composition of representative condensates including PML nuclear bodies, P-bodies, stress granules, the nucleolus, and two-dimensional membrane localized LAT and nephrin clusters. Specific interactions, such as interactions between modular binding domains, weaker interactions between intrinsically disorder regions and nucleic acid base pairing, and nonspecific interactions, such as electrostatic interactions and hydrophobic interactions, influence condensate composition. Understanding how specific condensate composition is determined is essential to understanding condensates as biochemical entities and ultimately discerning their cellular and organismic functions.  相似文献   
999.
Phase transitions that alter the physical state of ribonucleoprotein particles contribute to the spacial and temporal organization of the densely packed intracellular environment. This allows cells to organize biologically coupled processes as well as respond to environmental stimuli. RNA plays a key role in phase separation events that modulate various aspects of RNA metabolism. Here, we review the role that RNA plays in ribonucleoprotein phase separations.  相似文献   
1000.
The formation of membraneless organelles (MLOs) by phase separation has emerged as a new way of organizing the cytoplasm and nucleoplasm of cells. Examples of MLOs forming via phase separation are nucleoli in the nucleus and stress granules in the cytoplasm. The main components of these MLOs are macromolecules such as RNAs and proteins. In order to assemble by phase separation, these proteins and RNAs have to undergo many cooperative interactions. These cooperative interactions are supported by specific molecular features within phase-separating proteins, such as multivalency and the presence of disordered domains that promote weak and transient interactions. However, these features also predispose phase-separating proteins to aberrant behavior. Indeed, evidence is emerging for a strong link between phase-separating proteins, MLOs, and age-related diseases. In this review, we discuss recent progress in understanding the formation, properties, and functions of MLOs. We pay special attention to the emerging link between MLOs and age-related diseases, and we explain how changes in the composition and physical properties of MLOs promote their conversion into an aberrant state. Furthermore, we discuss the key role of the protein quality control machinery in regulating the properties and functions of MLOs and thus in preventing age-related diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号