首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   40篇
  国内免费   46篇
  498篇
  2024年   3篇
  2023年   10篇
  2022年   11篇
  2021年   11篇
  2020年   13篇
  2019年   18篇
  2018年   10篇
  2017年   21篇
  2016年   9篇
  2015年   19篇
  2014年   11篇
  2013年   30篇
  2012年   8篇
  2011年   19篇
  2010年   18篇
  2009年   19篇
  2008年   29篇
  2007年   17篇
  2006年   19篇
  2005年   17篇
  2004年   26篇
  2003年   20篇
  2002年   19篇
  2001年   18篇
  2000年   14篇
  1999年   18篇
  1998年   14篇
  1997年   8篇
  1996年   8篇
  1995年   4篇
  1994年   6篇
  1993年   7篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
排序方式: 共有498条查询结果,搜索用时 15 毫秒
81.
The essential oil from leaves of Majorana hortensis Moench (Lamiaceae) was isolated by hydrodistillation with a yield of 1.6% (wt/wt). The insecticidal activity of the oil was evaluated against fourth instars of Spodoptera littoralis Boisduval (Lepidoptera: Noctuidae) and adults of Aphis fabae L. (Hemiptera: Aphididae). The oil showed a remarkable toxic effect against S. littoralis in a topical application assay (LD50 = 2.48 μg per larva) and in a residual film assay (LC50 = 3.14 g/l). The oil of M. hortensis also exhibited a pronounced toxic effect against A. fabae adults with LC50 values of 1.86 and 2.27 g/l in rapid dipping and residual film assays, respectively. Gas chromatography-mass spectrometry analyses of M. hortensis essential oils revealed the presence of 31 compounds and the main components were terpinen-4-ol (30.0%), γ-terpinene (11.3%), and trans -sabinene hydrate (10.8%). Repeated column chromatography of M. hortensis oil on silica gel led to the isolation of two major constituents, which were characterized based on 1H-nuclear magnetic resonance and mass spectrometric data, as terpinen-4-ol and γ-terpinene. These two components were examined for their insecticidal and synergistic activities towards S. littoralis and A. fabae . Terpinen-4-ol and γ-terpinene exhibited a significant insecticidal activity against both insects, but γ-terpinene was more toxic than terpinen-4-ol. When tested in a binary mixture with the synthetic insecticides profenofos and methomyl, it was found that both compounds enhanced the insecticidal activity of these insecticides by two- to threefold. These results show that terpinen-4-ol and γ-terpinene have a synergistic effect on the insecticidal activities of synthetic insecticides profenofos and methomyl.  相似文献   
82.
The typical presentation of potato leafhopper injury in beans includes necrosis at the leaf margins (leaf burn or hopperburn), and downward curling or “cupping” of the leaves. To evaluate potato leafhopper damage a visual score that combines the overall severity of leaf burn, leaf curling and stunting symptoms is usually used. Nonetheless, it may be useful to evaluate these symptoms separately since they may be the result of separate mechanisms of damage, controlled by separate genes. A population of 108 recombinant inbred lines (RILs), derived from a cross between a leafhopper‐susceptible Ontario cultivar (Berna) and a resistant line (EMP 419) were scored for injury after natural infestation with Empoasca fabae in Canada and Empoasca kraemeri in Colombia. Leaf burn and leaf curl were significantly rank‐correlated (0.37–0.74, P<0.001) in all environments. However, several RILs consistently exhibited high scores for leaf curl but low values for leaf burn, which suggests that genetic dissection of these characters may be possible. Indeterminate growth habit was associated with slightly lower damage scores in Colombia and Ontario, Canada (P<0.05) while white‐seeded lines had lower damage scores in Colombia (P<0.05). The resistant parental line had significantly lower nymph counts than did the susceptible parent. A positive relationship between damage scores and nymph counts was also observed in the F3 families and the F5:6 RILs.  相似文献   
83.
李伟  陈怀谷  李伟  张爱香  陈丽华  姜伟丽 《遗传》2007,29(9):1154-1160
利用公共的真菌基因组数据库资源, 对核盘菌(Sclerotinia sclerotiorum)和灰葡萄孢(Botrytis cinerea)基因组中SSRs的结构类型、分布、丰度及最长序列等进行了系统分析, 并与已经研究过的禾谷镰孢菌(Fusarium graminearum), 稻瘟病菌(Magnaporthe grisea)和黑粉菌(Ustilago maydis)等几种植物病原真菌基因组中的SSRs进行了比较。结果表明: 核盘菌和灰葡萄孢基因组中的SSRs非常丰富, 分别为6 539和8 627个, 并且在结构类型和分布规律上具有一定的相似性; 与其他几种病原真菌相比, 核盘菌和灰葡萄孢基因组中长重复的四、五、六核苷酸基序更为丰富, 从而使得这两种真菌具有更高的变异性。同时, 我们发现真菌基因组中SSRs的丰度与基因组的大小及GC含量没有必然的关系。文章对核盘菌和灰葡萄孢基因组中SSRs的丰度、出现频率及最长基序的分析为快速、便捷地设计多态性丰富的SSRs引物提供了有益的信息。  相似文献   
84.
Non‐self‐recognition of microorganisms partly relies on the perception of microbe‐associated molecular patterns (MAMPs) and leads to the activation of an innate immune response. Bacillus subtilis produces three main families of cyclic lipopeptides (LPs), namely surfactins, iturins and fengycins. Although LPs are involved in induced systemic resistance (ISR) activation, little is known about defence responses induced by these molecules and their involvement in local resistance to fungi. Here, we showed that purified surfactin, mycosubtilin (iturin family) and plipastatin (fengycin family) are perceived by grapevine plant cells. Although surfactin and mycosubtilin stimulated grapevine innate immune responses, they differentially activated early signalling pathways and defence gene expression. By contrast, plipastatin perception by grapevine cells only resulted in early signalling activation. Gene expression analysis suggested that mycosubtilin activated salicylic acid (SA) and jasmonic acid (JA) signalling pathways, whereas surfactin mainly induced an SA‐regulated response. Although mycosubtilin and plipastatin displayed direct antifungal activity, only surfactin and mycosubtilin treatments resulted in a local long‐lasting enhanced tolerance to the necrotrophic fungus Botrytis cinerea in grapevine leaves. Moreover, challenge with specific strains overproducing surfactin and mycosubtilin led to a slightly enhanced stimulation of the defence response compared with the LP‐non‐producing strain of B. subtilis. Altogether, our results provide the first comprehensive view of the involvement of LPs from B. subtilis in grapevine plant defence and local resistance against the necrotrophic pathogen Bo. cinerea. Moreover, this work is the first to highlight the ability of mycosubtilin to trigger an immune response in plants.  相似文献   
85.
In filamentous ascomycetes, HOG-like signal transduction cascades are involved in the resistance to hyper-osmotic conditions and to dicarboximides and phenylpyrroles. The histidine kinase (HK) Bos1 and the mitogen-activated protein kinase (MAPK) Sak1 are important for the adaptation to hyper-osmotic and oxidative stress, development, and pathogenicity in the phytopathogenic fungus Botrytis cinerea. However, bos1Δ and sak1Δ mutants created previously, also presented different phenotypes, especially the sak1Δ mutants were not resistant to high fungicide concentrations. Since both single mutants were constructed in different parental strains, phenotypic variations due to the genetic background might be suspected. In order to establish the relationship between both protein kinases, we analyzed Sak1 phosphorylation under the control of the Bos1 HK and we realized epistasis analysis between bos1Δ and sak1Δ mutations through the construction of isogenic single and double mutants. Our results show that Bos1 negatively regulates Sak1 phosphorylation and that Bos1 regulates certain phenotypes independently of Sak1. They include fungicide susceptibility, adaptation and conidiation on high neutral osmolarity.  相似文献   
86.
87.
Treatment with the resistance priming inducer hexanoic acid (Hx) protects tomato plants from Botrytis cinerea by activating defence responses. To investigate the molecular mechanisms underlying hexanoic acid‐induced resistance (Hx‐IR), we compared the expression profiles of three different conditions: Botrytis‐infected plants (Inf), Hx‐treated plants (Hx) and Hx‐treated + infected plants (Hx+Inf). The microarray analysis at 24 h post‐inoculation showed that Hx and Hx+Inf plants exhibited the differential expression and priming of many Botrytis‐induced genes. Interestingly, we found that the activation by Hx of other genes was not altered by the fungus at this time point. These genes may be considered to be specific targets of the Hx priming effect and may help to elucidate its mechanisms of action. It is noteworthy that, in Hx and Hx+Inf plants, there was up‐regulation of proteinase inhibitor genes, DNA‐binding factors, enzymes involved in plant hormone signalling and synthesis, and, remarkably, the genes involved in oxidative stress. Given the relevance of the oxidative burst occurring in plant–pathogen interactions, the effect of Hx on this process was studied in depth. We showed by specific staining that reactive oxygen species (ROS) accumulation in Hx+Inf plants was reduced and more restricted around infection sites. In addition, these plants showed higher ratios of reduced to oxidized glutathione and ascorbate, and normal levels of antioxidant activities. The results obtained indicate that Hx protects tomato plants from B. cinerea by regulating and priming Botrytis‐specific and non‐specific genes, preventing the harmful effects of oxidative stress produced by infection.  相似文献   
88.
Two field experiments were conducted during 2004 and 2005 cropping seasons at Adet Agricultural Research Center, Ethiopia to assess yield losses caused by chocolate spot(Botrytis fabae) of faba bean in sole and mixed cropping systems using two cultivars. Cropping systems were sole faba bean (FB), faba bean mixed with field pea (FB: FP), barley (FB: BA) and maize (FB: MA). Mancozeb was sprayed at the rate of 2.5 kg a.i/ha at 7-, 14- and 21-day interval to generate different levels of chocolate spot disease in all the four cropping systems, and unsprayed control was also included. The treatments were arranged in a randomised complete block design (RCBD) with four replications. FB: MA mixed cropping significantly reduced disease severity and the area under disease progress curve (AUDPC) and increased faba bean grain yield. The highest faba bean grain yield among the three mixed croppings under different spray schedules was obtained from FB: MA mixed cropping in both 2004 and 2005 (2.56 and 3.74 t/ha, respectively) cropping seasons. There were highly significant yield differences (P < 0.05) among the spray intervals of mancozeb in both seasons. The highest grain yield (4.9 t/h) was recorded from the 7-day spray interval in 2005. The unsprayed faba bean had a lower grain yield (1.9 t/ha in 2004 and 2.3 t/ha in 2005) compared to the sprayed plots. The highest relative yield loss (67.5%) was calculated in 2005 from FB: FP mixed cropping in unsprayed plots. The relative yield losses in the unsprayed plots were in the range of 35.8–41.5% in 2004 and 52.6–67.5% in the 2005 cropping season. Severity and AUDPC were inversely correlated with faba bean grain yield. Significant differences were recorded in the 100-seed weight and days to maturity (DM). The unsprayed plots had shorter DM ranging from 126 to 128.5 day (except FB: MA mixed cropping) in 2004 and 122–123.9 days in 2005. In the sprayed plots DM was relatively longer than the unsprayed plots. A higher seed weight was recorded in the sole FB (56 g) and FB: MA (55 g) mixed cropping, and the lowest value of 100-seed weight was recorded from FB: FP (53 g) mixed cropping. The productivity of the mixed cropping evaluated by land equivalent ratio (LER) exceeded that of sole cropping. Faba bean grain yield was highly influenced by the severity of chocolate spot. The disease affects the DM, forcing early maturing of the plants.  相似文献   
89.
The new methylated grindelane diterpenoid, 7β ‐hydroxy‐8(17)‐dehydrogrindelic acid ( 1b ), together with the known 7α ‐hydroxy‐8(17)‐dehydrogrindelic acid ( 2a ), 6‐oxogrindelic acid ( 3a ), 4β ‐hydroxy‐6‐oxo‐19‐norgrindelic ( 4a ), 19‐hydroxygrindelic acid ( 5a ), 18‐hydroxygrindelic acid ( 6a ), 4α ‐carboxygrindelic acid ( 7a ), 17‐hydroxygrindelic acid ( 8a ), 6α ‐hydroxygrindelic acid ( 9a ), 8,17‐bisnor‐8‐oxagrindelic acid ( 10a ), 7α ,8α ‐epoxygrindelic acid ( 11a ), and strictanonic acid ( 12a ) as methyl esters were obtained from an Argentine collection of Grindelia chiloensis (Cornel .) Cabrera . Their structures and relative configurations were established on the basis of spectroscopic analysis. CHC l3 extract from the aerial parts and their pure compounds were evaluated for their antifungal and depigmenting effects. Methyl ester derivative of 10a ( 10b ) exhibited a remarkable mycelial growth inhibition against Botritis cinerea with an IC 50 of 13.5 μg ml?1. While the new grindelane 1b exerted a clear color reduction of the yellow‐orange pigment developed by Fusarium oxysporum against UV ‐induced damage.  相似文献   
90.
Salicylic acid (SA) acts antagonistically to jasmonic acid (JA) in plant immunity. We previously reported that CATALASE2 (CAT2) promotes JA-biosynthetic acyl-CoA oxidase (ACX) activity to enhance plant resistance to necrotrophic Botrytis cinerea, and SA represses JA biosynthesis through inhibiting CAT2 activity, while the underlying mechanism remains to be further elucidated. Here, we report that the truncated CAT2 N-terminus (CAT2-N) interacts with and promotes ACX2/3, and CAT2-N-overexpressing plants have increased JA accumulation and enhanced resistance to Bcinerea B05.10, but compromised antagonism of SA on JA. Catalase inhibitor treatment or mutating CAT2 active amino acids abolished CAT2 H2O2-decomposing activity but did not affect its promotion of ACX2/3 activity via interaction. CAT2-N, a truncated protein with no catalase activity, interacted with and promoted ACX2/3. Overexpressing CAT2-N in Arabidopsis plants resulted in increased ACX activity, higher JA accumulation, and stronger resistance to Bcinerea B05.10 infection. Additionally, SA dramatically repressed JA biosynthesis and resistance to Bcinerea in the wild type but not in the CAT2-N-overexpressing plants. Together, our study reveals that CAT2-N can be utilized as an accelerator for JA biosynthesis during plant resistance to Bcinerea B05.10, and this truncated protein partly relieves SA repression of JA biosynthesis in plant defence responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号