首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   40篇
  国内免费   46篇
  498篇
  2024年   3篇
  2023年   10篇
  2022年   11篇
  2021年   11篇
  2020年   13篇
  2019年   18篇
  2018年   10篇
  2017年   21篇
  2016年   9篇
  2015年   19篇
  2014年   11篇
  2013年   30篇
  2012年   8篇
  2011年   19篇
  2010年   18篇
  2009年   19篇
  2008年   29篇
  2007年   17篇
  2006年   19篇
  2005年   17篇
  2004年   26篇
  2003年   20篇
  2002年   19篇
  2001年   18篇
  2000年   14篇
  1999年   18篇
  1998年   14篇
  1997年   8篇
  1996年   8篇
  1995年   4篇
  1994年   6篇
  1993年   7篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
排序方式: 共有498条查询结果,搜索用时 15 毫秒
111.
Clonostachys rosea is a well-known biocontrol agent against Botrytis cinerea, the causal agent of gray mold in strawberry. The activity of cell wall-degrading enzymes might play a significant role for successful biocontrol by C. rosea. The expression pattern of four chitinases, and two endoglucanase genes from C. rosea strain IK726 was analyzed using real-time RT-PCR in vitro and in strawberry leaves during interaction with B. cinerea. Specific primers were designed for beta-tubulin genes from C. rosea and B. cinerea, respectively, and a gene encoding a DNA-binding protein (DBP) from strawberry, allowing in situ activity assessment of each fungus in vitro and during their interaction on strawberry leaves. Growth of B. cinerea was inhibited in all pathogen-antagonist interactions while the activity of IK726 was slightly increased. In all in vitro interactions, four of the six genes were upregulated while no change in expression of two endochitinases was measured. In strawberry leaves, the chitinase genes were upregulated 2-12-fold, except one of the endochitinases, whereas no change in expression of the two endoglucanases was measured. The results suggest that three out of four chitinase genes of IK726 are involved in biocontrol on leaves. This is the first example of monitoring of expression of chitinolytic genes in interactions between biocontrol agents and pathogens in plant material.  相似文献   
112.
Cel1 and Cel2 are members of the tomato (Solanum lycopersicum Mill) endo-beta-1,4-glucanase (EGase) family that may play a role in fruit ripening and organ abscission. This work demonstrates that Cel1 protein is present in other vegetative tissues and accumulates during leaf development. We recently reported the downregulation of both the Cel1 mRNA and protein upon fungal infection, suggesting the involvement of EGases in plant-pathogen interactions. This hypothesis was confirmed by assessing the resistance to Botrytis cinerea infection of transgenic plants expressing both genes in an antisense orientation (Anti-Cel1, Anti-Cel2 and Anti-Cel1-Cel2). The Anti-Cel1-Cel2 plants showed enhanced resistance to this fungal necrotroph. Microscopical analysis of infected leaves revealed that tomato plants accumulated pathogen-inducible callose within the expanding lesion. Anti-Cel1-Cel2 plants presented a faster and enhanced callose accumulation against B. cinerea than wild-type plants. The inhibitor 2-deoxy-d-glucose, a callose synthesis inhibitor, showed a direct relationship between faster callose accumulation and enhanced resistance to B. cinerea. EGase activity appears to negatively modulate callose deposition. The absence of both EGase genes was associated with changes in the expression of the pathogen-related genes PR1 and LoxD. Interestingly, Anti-Cel1-Cel2 plants were more susceptible to Pseudomonas syringae, displaying severe disease symptoms and enhanced bacterial growth relative to wild-type plants. Analysis of the involvement of Cel1 and Cel2 in the susceptibility to B. cinerea in fruits was done with the ripening-impaired mutants Never ripe (Nr) and Ripening inhibitor (rin). The data reported in this work support the idea that enzymes involved in cell wall metabolism play a role in susceptibility to pathogens.  相似文献   
113.
Botrytis cinerea is one of the most destructive pathogens of ve?getables and fruits both in the field and storage. There have been several research activities focused on developing biocontrol strategies for the pathogen due to its resistance to the commonly used synthetic fungicides. Additionally, concerns have been raised over residual effect of current synthetic fungicides used for its control. Most of these research activities have focused on Trichoderma spp., Ulocladium spp., Bacillus subtilis, plant extracts and their essential oils with some commercial products available on the market for the control of B. cinerea disease. This review summarises some of the current published information on the use of biocontrol agents and plant-based compounds for B. cinerea control. Some limitations and future prospects were also mentioned.  相似文献   
114.
Crouzet J  Trombik T  Fraysse AS  Boutry M 《FEBS letters》2006,580(4):1123-1130
Among the ABC transporters, the pleiotropic drug resistance (PDR) family is particular in that its members are found only in fungi and plants and have a reverse domain organization, i.e., the nucleotide binding domain precedes the transmembrane domain. In Arabidopsis and rice, for which the full genome has been sequenced, the family of plant ABC transporters contains 15 and 23 PDR genes, respectively, which can be tentatively organized using the sequence data into five subfamilies. Most of the plant PDR genes so far characterized belong to subfamily I and have been shown to be involved in responses to abiotic and biotic stress, in the latter case, probably by transporting antimicrobial secondary metabolites to the cell surface. Only a single subfamily II member has been characterized. Induction of its expression by iron deficiency suggests its involvement in iron deficiency stress, thus, enlightening a new physiological role for a PDR gene.  相似文献   
115.
番茄灰霉病害及其微生物防治的研究进展   总被引:1,自引:0,他引:1  
综述了番茄灰霉病的病害,并从国内外拮抗菌以及内生菌的筛选和利用等方面概述了番茄灰霉病微生物防治的研究进展,提出了目前番茄灰霉病微生物防治的问题及今后的应用前景。  相似文献   
116.
117.
118.
1. Mutualistic and antagonistic interactions, although often studied independently, may affect each other, and food web dynamics are likely to be determined by the two processes working in concert. 2. The structure, and hence dynamics, of food webs depends on the relative abundances of generalist and specialist feeding guilds. Secondary parasitoids of aphids can be divided into two feeding guilds: (i) the more specialised endoparasitoids, which attack the primary parasitoid larvae in the still living aphid, and (ii) the generalist ectoparasitoids, which attack the pre‐pupa of the primary or secondary parasitoid in the mummified aphid. 3. We studied the effect of an ant–aphid mutualism on the relative abundance of these two functional groups of secondary parasitoids. We hypothesised that generalists will be negatively affected by the presence of ants, thus leading to a greater dominance of specialists. 4. We manipulated the access of ants (Lasius niger) to aphid colonies in which we placed parasitised aphids. Aphid mummies were collected and reared to determine the levels of endo‐ and ecto‐secondary parasitism. 5. When aphids were attended by L. niger the proportion of secondary parasitism by ectoparasitoids dropped from 26 to 8% of the total number of parasitised aphids, with Pachyneuron aphidis most strongly affected, while endoparasitoids as a group did not respond. However, among these Syrphophagus mamitus profited from ant attendance becoming the dominant secondary parasitoid, while parasitisation rates of Alloxysta and Phaenoglyphis declined. 6. The shift to S. mamitus as dominant secondary parasitoid in ant‐attended aphid colonies is likely due to the behavioural plasticity of this species in response to ant aggression, and a release from tertiary parasitism by generalist ectoparasitoids. 7. The reduction of secondary parasitism by generalist ectoparasitoids reduces the potential for apparent competition among primary parasitoids with consequences for the dynamics of the wider food web.  相似文献   
119.
Pythium paroecandrum (B-30), an oomycete, was isolated from soil samples taken from a wheat field in Genlis in the Burgundy region of France and was found to check the growth and development of Botrytis cinerea, a serious grapevine pathogen. The oomycete is a fast-growing organism, living on vegetable debris, and can be recognised by its catenulate hyphal swellings, catenulate oogonia, and monoclinous antheridia. When grown together with B. cinerea, the causal agent of the grey mould disease of the grapevine, P. paroecandrum shows a pronounced antagonism and suppresses its growth and its aptitude to provoke the grey mould symptoms. Morphological features of this oomycete, its antagonism to B. cinerea, the sequences of the internal transcribed spacer region of its nuclear ribosomal DNA, and its comparison with related species are discussed in this article.  相似文献   
120.
由灰葡萄孢(Botrytis cinerea)引起的灰霉病是番茄生产中最重要的病害之一,当前使用的杀菌剂因药物残留、病原菌抗药性及食品安全等原因逐渐受到限制。因此,利用拮抗微生物的生物防治逐渐成为灰霉病防控的有效策略。【目的】从番茄植株体内筛选具有抗病促生特性内生菌株并对其生防潜力进行评估,为开发番茄灰霉病生物防治新策略提供理论依据。【方法】采用组织分离法在番茄植株不同部位分离出内生细菌、真菌,结合16SrRNA和ITS序列分析,对候选菌株进行初步鉴定;通过菌株对峙培养、果实离体接种筛选对灰葡萄孢具有拮抗活性的内生菌;进一步测定菌株分泌生长素、嗜铁素的能力及其对拟南芥和番茄幼苗生长的促生特性。【结果】从番茄植株不同部位共分离出72株内生细菌和31株内生真菌,通过平板对峙法筛选出1株对多种病原菌具有较好抑菌活性的内生细菌FQ-G3,分子鉴定为Bacillus velezensis。FQ-G3对灰葡萄孢抑菌率达80.93%,并显著抑制灰葡萄孢在番茄果实上的扩展。该菌株能够分泌生长素、蛋白酶和嗜铁素,且对拟南芥、番茄幼苗具有明显的促生效果。【结论】本研究表明分离自番茄植株的内生菌FQ-G3具...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号