首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   7篇
  国内免费   1篇
  2022年   4篇
  2021年   10篇
  2020年   7篇
  2019年   7篇
  2018年   13篇
  2017年   5篇
  2016年   8篇
  2015年   4篇
  2014年   26篇
  2013年   29篇
  2012年   15篇
  2011年   18篇
  2010年   10篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   10篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  1999年   4篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1980年   6篇
  1977年   3篇
  1976年   2篇
排序方式: 共有213条查询结果,搜索用时 15 毫秒
121.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Mutations in the gene encoding copper/zinc superoxide dismutase-1 (SOD1) are responsible for most familiar cases, but the role of mutant SOD1 protein dysfunction in non-cell autonomous neurodegeneration, especially in relation to microglial activation, is still unclear. Here, we focused our study on microglial cells, which release SOD1 also through exosomes. We observed that in rat primary microglia the overexpression of the most-common SOD1 mutations linked to fALS (G93A and A4V) leads to SOD1 intracellular accumulation, which correlates to autophagy dysfunction and microglial activation. In primary contact co-cultures, fALS mutant SOD1 overexpression by microglial cells appears to be neurotoxic by itself. Treatment with the autophagy-inducer trehalose reduced mutant SOD1 accumulation in microglial cells, decreased microglial activation and abrogated neurotoxicity in the co-culture model. These data suggest that i) the alteration of the autophagic pathway due to mutant SOD1 overexpression is involved in microglial activation and neurotoxicity; ii) the induction of autophagy with trehalose reduces microglial SOD1 accumulation through proteasome degradation and activation, leading to neuroprotection. Our results provide a novel contribution towards better understanding key cellular mechanisms in non-cell autonomous ALS neurodegeneration.  相似文献   
122.
Suppressors of cytokine signalling (SOCS) proteins regulate signal transduction, but their role in responses to chemokines remains poorly understood. We report that cells expressing SOCS1 and 3 exhibit enhanced adhesion and reduced migration towards the chemokine CCL11. Focal adhesion kinase (FAK) and the GTPase RhoA, control cell adhesion and migration and we show the presence of SOCS1 or 3 regulates expression and tyrosine phosphorylation of FAK, while also enhancing activation of RhoA. Our novel findings suggest that SOCS1 and 3 may control chemotaxis and adhesion by significantly enhancing both FAK and RhoA activity, thus localizing immune cells to the site of allergic inflammation.  相似文献   
123.
CI-1034, an endothelin-A receptor antagonist was being developed for pulmonary hypertension. Drug-drug interaction studies using human hepatic microsomes were conducted to assess CYP1A2, CYP2C9, CYP2C19, CYP3A4 and CYP2D6 inhibition potential; CYP3A4 induction potential was evaluated using primary human hepatocytes. CI-1034 moderately inhibited CYP2C9 (IC(50) 39.6 microM) and CYP3A4 activity (IC(50) 21.6 microM); CYP3A4 inhibition was metabolism-dependent. In human hepatocytes, no increase in CYP3A4 activity was observed in vitro, while mRNA was induced 15-fold, similar to rifampin, indicating that CI-1034 is both an inhibitor and inducer of CYP3A4. A 2-week clinical study was conducted to assess pharmacokinetics, pharmacodynamics and safety. No significant changes were observed in [formula: see text] between days 1 and 14. However, reversible elevations of serum liver enzymes were observed with a 50mg BID dose and the program was terminated. To further understand the interactions of CI-1034 in the liver and possible mechanisms of the observed hepatotoxicity, we evaluated the effect of CI-1034 on bile acid transport and previously reported that CI-1034 inhibited biliary efflux of taurocholate by 60%, in vitro. This indicated that inhibition of major hepatic transporters could be involved in the observed hepatotoxicity. We next evaluated the in vitro inhibition potential of CI-1034 with the major hepatic transporters OATP1B1, OATP1B3, OATP2B1, MDR1, MRP2 and OCT. CI-1034 inhibited OATP1B1 (K(i) 2 microM), OATP1B3 (K(i) 1.8 microM) and OATP2B1 activity (K(i) 3.3 microM) but not OCT, MDR1 or MRP2 mediated transport. Our data indicates that CI-1034 is an inhibitor of major hepatic transporters and inhibition of bile efflux may have contributed to the observed clinical hepatotoxicity. We recommend that in vitro drug-drug interaction panels include inhibition and induction studies with transporters and drug metabolizing enzymes, to more completely assess potential in vivo interactions or toxicity.  相似文献   
124.
Mouse L1210 leukemia and HeLa cells exposed to 2,4-dinitrophenol, oligomycin and rotenone under conditions which led to depletion of ATP pools exhibit DNA damage expressed as irreversible DNA strand separation in alkali. Removal of the agents allows both the repletion of ATP pools and repair of DNA damage.  相似文献   
125.
Schwann cells (SCs) are the myelin forming cells in the peripheral nervous system, they play a key role in the pathology of various polyneuropathies and provide trophic support to axons via expression of various neurotrophic factors, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Ethanol (EtOH) adversely affected both SCs proliferation and myelin formation in culture. Resveratrol (Res) has been shown to regulate many cellular processes and to display multiple protective and therapeutic effects. Whether Res has protective effects on SCs with EtOH-induced toxicity is still unclear. The protective efficacy of Res on EtOH-treated SCs in vitro was investigated in the present study. Res improved cell viability of the EtOH-treated SCs. Hoechst 33342 staining and terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate nick-end labeling analysis showed that the EtOH-induced apoptosis was inhibited by Res. The effects of Res were blocked by the 5′-adenosine monophosphate-activated protein kinase inhibitor Compound C and the silencing information regulator T1 inhibitor nicotinamide. Res could increase the mRNA and protein levels of BDNF and GDNF in the EtOH-treated SCs. However, the EtOH-induced increase of NGF in the SCs is inhibited by Res. The data from the present study indicate that Res protects SCs from EtOH-induced cell death and regulates the expression of neurotrophic factors. Res and its derivative may be effective for the treatment of neuropathic diseases induced by EtOH.  相似文献   
126.
Amphotericin B (AmB) is a polyene antibiotic and reported to be one of a few reagents having therapeutic effects on prion diseases, such as the delay in the appearing of the clinical signs and the prolongation of the survival time. In prion diseases, glial cells have been suggested to play important roles by proliferating and producing various factors such as nitric oxide, proinflammatory cytokines, and neurotrophic factors. However, the therapeutic mechanism of AmB on prion diseases remains elusive. We have previously reported that AmB changed the expression of neurotoxic and neurotrophic factors in microglia (Motoyoshi et al., 2008, Neurochem. Int. 52, 1290–1296). In the present study, we examined the effects of AmB on cellular functions of rat cultured astrocytes. We found that AmB could activate astrocytes to produce nitric oxide via inducible nitric oxide synthase induction. AmB also induced mRNA expression of interleukin-1β and tumor necrosis factor-α, and productions of their proteins in astrocytes. Moreover, AmB changed levels of neurotrophic factor mRNAs and proteins. Among three neurotrophic factors examined here, neurotrophin-3 mRNA expression and its protein production in the cells were down-regulated by AmB stimulation. On the other hand, AmB significantly enhanced the amounts of glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor proteins in the cells and the medium. These results suggest that AmB might show therapeutic effects on prion diseases by controlling the expression and production of such mediators in astrocytes.  相似文献   
127.
We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylation of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5Rgsc451 mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.  相似文献   
128.
Kashin–Beck disease (KBD) is a chronic endemic osteoarthritis in China. Previous studies have suggested a role of metabolic dysfunction in causation of this disease. In this investigation, the metabolomics approach and cell experiments were used to discover the metabolic changes and their effects on KBD chondrocytes. Nuclear magnetic resonance (1H NMR) spectroscopy was used to examine serum samples from both the KBD patients and normal controls. The pattern recognition multivariate analysis (OSC–PLS) and quantitative analysis (QMTLS iterator) revealed altered glycometabolism in KBD, with increased glucose and decreased lactate and citrate levels. IPA biological analysis showed the centric location of glucose in the metabolic network. Massive glycogen deposits in chondrocytes and increased uptake of glucose by chondrocytes further confirmed disordered glycometabolism in KBD. An in vitro study showed the effects of disordered glycometabolism in chondrocytes. When chondrocytes were treated with high glucose, expression of type II collagen and aggrecan were decreased, while TNF-α expression, the level of cellular reactive oxygen species and cell apoptosis rates all were increased. Therefore, our results demonstrated that disordered glycometabolism in patients with KBD was linked to the damage of chondrocytes. This may provide a new basis for understanding the pathogenesis of KBD.  相似文献   
129.
Capsule A five-year monitoring study is described of overall population stability and differential reproductive success in relation to habitat heterogeneity.

Aims To assess the effect of the altitude and orientation on laying date and breeding performance, and analyse the effect of territory quality as a likely factor that could be regulating the population.

Methods We monitored a population of 28–33 pairs, from 2002 to 2006, counting a total of 131 breeding attempts.

Results Territories located at lower altitude showed higher mean fecundity than those located at higher altitude. The mean laying date was February 18 ± 16 days. Laying date was positively correlated with nest altitude, the coastal pairs laying earlier than those in mountainous regions. Pairs located at lower altitudes showed higher mean fecundity than those located at higher altitudes. There was no preference in mean orientation either in breeding performance or in relationship to nest altitude. We did not find a difference in breeding performance between territories classed as being at high density and those classed as being at low density.

Conclusion The population has remained stable since the first national census was conducted 17 years ago. Our results could be explained in the light of the Habitat Heterogeneity Hypothesis. We suggest a differential reproductive success in relation to habitat heterogeneity.  相似文献   
130.
Resveratrol (RES) is a putative chemotherapeutic naturally found in grapes, peanuts, and Japanese knotweed. Previous studies demonstrate that RES modulates calcium signaling as part of its chemotherapeutic activity. In this study, we determined the chemotherapeutic activity of three RES esters that have been modified at the 4’ hydroxyl by the addition of pivalate, butyrate, and isobutyrate. All of the RES derivatives disrupted the calcium signaling in prostate cancer cells more than the parent compound, RES. Further, we demonstrate that the RES derivatives may disrupt the calcium homeostasis by activating calcium release from the endoplasmic reticulum and inhibiting plasma membrane Ca2+-ATPase. The pivalated and butyrated RES derivatives decreased cell viability significantly more than RES. Because pivalated and butyrated RES are more effective than RES at targeting calcium signaling pathways, pivalated and butyrated RES may serve as more effective chemotherapeutics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号