首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3309篇
  免费   256篇
  国内免费   50篇
  2023年   39篇
  2022年   49篇
  2021年   131篇
  2020年   102篇
  2019年   138篇
  2018年   129篇
  2017年   100篇
  2016年   76篇
  2015年   151篇
  2014年   274篇
  2013年   255篇
  2012年   177篇
  2011年   258篇
  2010年   198篇
  2009年   153篇
  2008年   214篇
  2007年   173篇
  2006年   132篇
  2005年   115篇
  2004年   100篇
  2003年   84篇
  2002年   58篇
  2001年   42篇
  2000年   27篇
  1999年   36篇
  1998年   24篇
  1997年   20篇
  1996年   22篇
  1995年   15篇
  1994年   28篇
  1993年   27篇
  1992年   23篇
  1991年   25篇
  1990年   10篇
  1989年   14篇
  1988年   15篇
  1987年   9篇
  1986年   8篇
  1985年   15篇
  1984年   11篇
  1983年   15篇
  1982年   8篇
  1981年   10篇
  1980年   18篇
  1979年   17篇
  1978年   14篇
  1976年   14篇
  1974年   6篇
  1973年   6篇
  1972年   11篇
排序方式: 共有3615条查询结果,搜索用时 640 毫秒
91.
Vaccination represents one of the greatest public health triumphs; in part due to the effect of adjuvants that have been included in vaccine preparations to boost the immune responses through different mechanisms. Although a variety of novel adjuvants have been under development, only a limited number have been approved by regulatory authorities for human vaccines. This report reflects the conclusions of a group of scientists from academia, regulatory agencies and industry who attended a conference on the current state of the art in the adjuvant field. Held at the U.S. Pharmacopeial Convention (USP) in Rockville, Maryland, USA, from 18 to 19 April 2013 and organized by the International Association for Biologicals (IABS), the conference focused particularly on the future development of effective adjuvants and adjuvanted vaccines and on overcoming major hurdles, such as safety and immunogenicity assessment, as well as regulatory scrutiny. More information on the conference output can be found on the IABS website, http://www.iabs.org/.  相似文献   
92.
Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell differentiation in vitro and bone regeneration in vivo. It may be possible to improve healing of bone defects in humans using stem cells from bone marrow.  相似文献   
93.
无关供者脐带血干细胞移植概况   总被引:1,自引:0,他引:1  
脐带血作为造血干细胞的一大来源,已逐渐获得医学界的认可,随着临床实践的不断展开,对脐带血的使用也趋于标准化。我们通过移植物抗宿主病和治愈情况对骨髓移植与脐带血移植进行了比较,提供了移植用脐带血的择优选取办法及移植的最低细胞剂量,对双份脐带血的选择给出建议,同时对非亲缘脐血与骨髓共输注临床使用情况和嵌合体检测做了介绍与评价。可以看出,在治疗恶性血液病时,脐带血移植是一个可靠的方法。  相似文献   
94.
A density-based load estimation method was applied to determine femoral load patterns. Two-dimensional finite element models were constructed using single energy quantitative computed tomography (QCT) data from two femora. basic load cases included parabolic pressure joint loads and constant tractions on the greater trochanter. An optimization procedure adjusted magnitudes of the basic load cases, such that the applied mechanical stimulus approached the ideal stimulus throughout each model. Dominant estimated load directions were generally consistent with published experimental data for gait. Other estimated loads suggested that loads at extreme joint orientations may be important to maintenance of bone structure. Remodeling simulations with the estimated loads produced density distributions qualitatively similar to the QCT data sets. Average nodal density errors between QCT data and predictions were 0·24 g/cm3 and 0·28 g/cm3. The results indicate that density-based load estimation could improve understanding of loading patterns on bones.  相似文献   
95.

The Shear-slip Mesh Update Method (SSMUM) is being used in flow simulations involving large but regular displacements of one or more boundaries of the computational domain. We follow up the earlier discussion of the method with notes on practical implementation aspects. In order to establish a benchmark problem for this class of flow problems, we define and report results from a two-dimensional viscous flow around a rotating stirrer in a square chamber. The application potential of the method is demonstrated in the context of biomedical design problem, as we perform an analysis of blood flow in a centrifugal left ventricular assist device, or blood pump, which involves a rotating impeller in a non-axisymmetric housing.  相似文献   
96.
An algorithm for bone remodeling is presented which allows for both a redistribution of density and a continuous change of principal material directions for the orthotropic material properties of bone. It employs a modal analysis to add density for growth and a local effective strain based analysis to redistribute density. General re-distribution functions are presented. The model utilizes theories of cellular solids to relate density and strength. The code predicts the same general density distributions and local orthotropy as observed in reality.  相似文献   
97.
Nowadays, there is a growing consensus on the impact of mechanical loading on bone biology. A bone chamber provides a mechanically isolated in vivo environment in which the influence of different parameters on the tissue response around loaded implants can be investigated. This also provides data to assess the feasibility of different mechanobiological models that mathematically describe the mechanoregulation of tissue differentiation. Before comparing numerical results to animal experimental results, it is necessary to investigate the influence of the different model parameters on the outcome of the simulations. A 2D finite element model of the tissue inside the bone chamber was created. The differentiation models developed by Prendergast, et al. [“Biophysical stimuli on cells during tissue differentiation at implant interfaces”, Journal of Biomechanics, 30(6), (1997), 539–548], Huiskes et al. [“A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation”, Journal of Material Science: Materials in Medicine, 8 (1997) 785–788] and by Claes and Heigele [“Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing”, Journal of Biomechanics, 32(3), (1999) 255–266] were implemented and integrated in the finite element code. The fluid component in the first model has an important effect on the predicted differentiation patterns. It has a direct effect on the predicted degree of maturation of bone and a substantial indirect effect on the simulated deformations and hence the predicted phenotypes of the tissue in the chamber. Finally, the presence of fluid also causes time-dependent behavior.

Both models lead to qualitative and quantitative differences in predicted differentiation patterns. Because of the different nature of the tissue phenotypes used to describe the differentiation processes, it is however hard to compare both models in terms of their validity.  相似文献   
98.
99.
The key to the development of a successful implant is an understanding of the effect of bone remodelling on its long-term fixation. In this study, clinically observed patterns of bone remodelling have been compared with computer-based predictions for one particular design of prosthesis, the Thrust Plate Prosthesis (Centerpulse Orthopedics, Winterthur, Switzerland). Three-dimensional finite-element models were created using geometrical and bone density data obtained from CT scanning. Results from the bone remodelling simulation indicated that varying the relative rate of bone deposition/resorption and the interfacial conditions between the bone and the implant could produce the trend towards the two clinically observed patterns of remodelling.  相似文献   
100.
Abstract

Objectives: The purpose of the present study was to evaluate the distribution and magnitude of stresses through the bone tissue surrounding Morse taper dental implants at different positioning relative to the bone crest. Materials and Methods: A mandibular bone model was obtained from a computed tomography scan. A three-dimensional (3D) model of Morse taper implant-abutment systems placed at the bone crest (equicrestal) and 2?mm bellow the bone crest (subcrestal) were assessed by finite element analysis (FEA). FEA was carried out on axial and oblique (45°) loading at 150 N relatively to the central axis of the implant. The von Mises stresses were analysed considering magnitude and volume of affected peri-implant bone. Results: On vertical loading, maximum von Mises stresses were recorded at 6-7?MPa for trabecular bone while values ranging from 73 up to 118?MPa were recorded for cortical bone. On oblique loading at the equiquestral or subcrestal positioning, the maximum von Mises stresses ranged from 15 to 21?MPa for trabecular bone while values at 150?MPa were recorded for the cortical bone. On vertical loading, >99.9vol.% cortical bone volume was subjected to a maximum of 2?MPa while von Mises stress values at 15?MPa were recorded for trabecular bone. On oblique loading, >99.9vol.% trabecular bone volume was subjected to maximum stress values at 5?MPa, while von Mises stress values at 35?MPa were recorded for >99.4vol.% cortical bone. Conclusions: Bone volume-based stress analysis revealed that most of the bone volume (>99% by vol) was subjected to significantly lower stress values around Morse taper implants placed at equicrestal or subcrestal positioning. Such analysis is commentary to the ordinary biomechanical assessment of dental implants concerning the stress distribution through peri-implant sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号