首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9545篇
  免费   808篇
  国内免费   762篇
  2024年   20篇
  2023年   113篇
  2022年   147篇
  2021年   267篇
  2020年   297篇
  2019年   381篇
  2018年   363篇
  2017年   345篇
  2016年   356篇
  2015年   374篇
  2014年   623篇
  2013年   735篇
  2012年   472篇
  2011年   552篇
  2010年   473篇
  2009年   464篇
  2008年   575篇
  2007年   558篇
  2006年   450篇
  2005年   436篇
  2004年   330篇
  2003年   292篇
  2002年   228篇
  2001年   203篇
  2000年   174篇
  1999年   169篇
  1998年   157篇
  1997年   118篇
  1996年   123篇
  1995年   92篇
  1994年   96篇
  1993年   114篇
  1992年   93篇
  1991年   97篇
  1990年   65篇
  1989年   66篇
  1988年   61篇
  1987年   65篇
  1986年   51篇
  1985年   70篇
  1984年   82篇
  1983年   43篇
  1982年   55篇
  1981年   43篇
  1980年   59篇
  1979年   49篇
  1978年   34篇
  1977年   18篇
  1976年   24篇
  1972年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Habitat assessment by parasitoids: consequences for population distribution   总被引:1,自引:0,他引:1  
The ideal free distribution (IFD) is a stable distribution ofcompetitors among resource patches. For equally efficient competitors,equilibrium is reached when the per capita rate of intake equalizesacross patches. The seminal version of the IFD assumes omniscience,but populations may still converge toward the equilibrium providedthat competitors 1) accurately assess their environment by learningand 2) remain for an optimal (rate-maximizing) time on eachencountered patch. In the companion article (Tentelier C, DesouhantE, Fauvergue X. 2006. Habitat assessment by parasitoids: mechanismsfor patch time allocation. Behav Ecol. Forthcoming), it is shownthat the parasitoid wasp Lysiphlebus testaceipes adapts itsexploitation of aphid host colonies based on previous experience,in a manner consistent with these two conditions. We thereforepredicted that a randomly distributed population of initiallynaive wasps should converge toward the IFD. We tested this predictionby introducing 1300 L. testaceipes females into a 110-m2 greenhousecontaining 40 host patches. Just after introduction, the parasitoidrate of gain was positively affected by host number and negativelyaffected by parasitoid number but, as predicted, these effectsvanished in the course of the experiment. Six hours after introduction,the expected rate of gain reached a constant. Surprisingly,this passage through equilibrium was not accompanied by a decreasein the coefficient of variation among gain rates or by a shiftfrom a random to an aggregated distribution of parasitoids.These results challenge our understanding of the link betweenindividual behavior and population distribution.  相似文献   
972.
Bone is a composite material with a hierarchical structure. Its strength depends on its structural and material properties. In the present study, Raman microspectroscopic and Imaging analyses were employed to study 12 osteons in tissue sections from the femoral midshaft of a healthy human female, with a spatial resolution of approximately 1mum. Spatial changes in amount of mineral and organic matrix, as well as the variation in the mineral content were determined, imaged, and plotted as a function of the polarization of incident light. The results showed that the prominent bands, such as nu(1) PO(4) and amide I, commonly used for the determination of mineral and organic compositions, are quite sensitive to the orientation and the polarization direction of the incident light. On the other hand, bands such as amide III, nu(2) PO(4) and nu(4) PO(4) are less susceptible to the orientational effects. As a result, exclusive consideration of the nu(1) PO(4) and amide I bands for the calculation of material properties might lead to erroneous conclusions. Amide III, nu(2) PO(4) and nu(4) PO(4) Raman bands should also be taken into consideration for compositional analysis of bone structures, especially ones with unknown orientational features. Moreover, the results of the present study demonstrate the versatility of the analytical technique, and provide insights into the organization of bone tissue at the ultrastructural level.  相似文献   
973.
We recently identified collagen triple helix repeat containing-1 (Cthrc1) as a novel gene induced in adventitial fibroblasts after arterial injury. Cthrc1 is a 30 kDa secreted protein that has the ability to inhibit collagen matrix synthesis. Cthrc1 is also glycosylated and retains a signal sequence consistent with the presence of Cthrc1 in the extracellular space. In injured arteries and skin wounds, we have found Cthrc1 expression to be associated with myofibroblasts and sites of collagen matrix deposition. Furthermore, we demonstrated that Cthrc1 inhibits collagen matrix deposition in vitro. Using in situ hybridization and immunohistochemistry, we characterized the expression domains of Cthrc1 during murine embryonic development and in postnatal tissues. In mouse embryos, Cthrc1 was expressed in the visceral endoderm, notochord, neural tube, developing kidney, and heart. Abundant expression of Cthrc1 was observed in the developing skeleton, i.e., in cartilage primordia, in growth plate cartilage with exclusion of the hypertrophic zone, in the bone matrix and periostium. Bones from adults showed expression of Cthrc1 only in the bone matrix and periostium while the articular cartilage lacked expression. Cthrc1 is typically expressed at epithelial-mesenchymal interfaces that include the epidermis and dermis, basal corneal epithelium, airway epithelium, esophagus epithelium, choroid plexus epithelium, and meninges. In the adult kidney, collecting ducts and distal tubuli expressed Cthrc1. Collectively, the sites of Cthrc1 expression overlap considerably with those reported for TGF-beta family members and interstitial collagens. The present study provides useful information towards the understanding of potential Cthrc1 functions.  相似文献   
974.
We previously found that transplantation with bone marrow cells (BMCs) improves liver function and liver fibrosis in cirrhotic mice. In the presence of liver damage induced by carbon tetrachloride (CCl4), transplanted BMC migrated into the peri-portal region and trans-differentiated into hepatocytes that produce albumin. Thus under these conditions, BMC transplantation induces liver regeneration. Detecting serum marker proteins is important to monitor the recovery of liver function of cirrhotic mice after BMC transplantation. We therefore initially resolved proteins extracted from serum samples at 48 h after BMC transplantation by 2-DE and compared spot intensity between control and BMC groups of mice. Six protein spots increased in the BMC group compared with the control group. MS revealed that these spots comprised apolipoprotein A1 (apoA1), apolipoprotein C3 (apoC3), vitamin D-binding protein, alpha-1-antitrypsin and proteasome subunit alpha type 1. We subsequently confirmed the levels of apoA1 in serum and liver samples by immunoblotting. ApoA1 increased at early stage (48 h and 1 wk) after BMC transplantation in this mouse model of liver cirrhosis. The early elevation of apoA1 might be useful to predict liver regeneration in cirrhotic mice after BMC transplantation.  相似文献   
975.
Fine root tumover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from Mav to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine root biomass(live (32.2 g.m-2.a-1)in the middle(10-20 cm)and deep layer (20-30cm),respectively.Live and dead fine root biomass was the highest from May to July and in September,but lower in August and October.The live fine root biomass decreased and dead biomass increased during the growing soil layer.RLD and SRL in May were the highestthe other months,and RLD was the lowest in Septemberdynamics of fine root biomass,RLD,and SRL showed a close relationship with changes in soil moisture,temperature,and nitrogen availability.To a lesser extent,the temperature could be determined by regression analysis.Fine roots in the upper soil layer have a function of absorbing moisture and nutrients,while the main function of deeper soil may be moisture uptake rather than nutrient acquisition.Therefore,carbon allocation to roots in the upper soil layer and deeper soil layer was different.Multiple regression analysis showed that variation in soil resource availability could explain 71-73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass.These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability,which resulted in an increased allocation of carbohydrate to these roots,but a lower allocation of carbohydrate to those in soil with lower resource availability.  相似文献   
976.
Mechanical stresses play a key role in regulating cell growth and cell differentiation. Using mechanical and physiological data available in the literature, we are able to construct a growth curve of a child, which we compare to the standard curve. It appears likely that the impact of hormones on pubertal growth rate sprout followed by growth arrest can be solely explained by increased mechanical stresses. The uptake of hormones by the muscles results in increased mechanical stress on the chondrocyte before and at the puberty, resulting in a peak in growth followed by growth cessation.  相似文献   
977.
Fine root turnover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors. Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past, our understanding of it remains limited. This is because the dynamics processes associated with soil resources availability are still poorly understood. Soil moisture, temperature, and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level. In temperate forest ecosystems, seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground. Therefore, fine root biomass, root length density (RLD) and specific root length (SRL) vary during the growing season. Studying seasonal changes of fine root biomass, RLD, and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover. The objective of this study was to understand whether seasonal variations of fine root biomass, RLD and SRL were associated with soil resource availability, such as moisture, temperature, and nitrogen, and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation. We used a soil coring method to obtain fine root samples (⩽2 mm in diameter) every month from May to October in 2002 from a 17-year-old L. gmelinii plantation in Maoershan Experiment Station, Northeast Forestry University, China. Seventy-two soil cores (inside diameter 60 mm; depth intervals: 0–10 cm, 10–20 cm, 20–30 cm) were sampled randomly from three replicates 25 m × 30 m plots to estimate fine root biomass (live and dead), and calculate RLD and SRL. Soil moisture, temperature, and nitrogen (ammonia and nitrates) at three depth intervals were also analyzed in these plots. Results showed that the average standing fine root biomass (live and dead) was 189.1 g·m−2·a−1, 50% (95.4 g·m−2·a−1) in the surface soil layer (0–10 cm), 33% (61.5 g·m−2·a−1), 17% (32.2 g·m−2·a−1) in the middle (10–20 cm) and deep layer (20–30cm), respectively. Live and dead fine root biomass was the highest from May to July and in September, but lower in August and October. The live fine root biomass decreased and dead biomass increased during the growing season. Mean RLD (7,411.56 m·m−3·a−1) and SRL (10.83 m·g−1·a−1) in the surface layer were higher than RLD (1 474.68 m·m−3·a−1) and SRL (8.56 m·g−1·a−1) in the deep soil layer. RLD and SRL in May were the highest (10 621.45 m·m−3 and 14.83m·g−1) compared with those in the other months, and RLD was the lowest in September (2 198.20 m·m−3) and SRL in October (3.77 m·g−1). Seasonal dynamics of fine root biomass, RLD, and SRL showed a close relationship with changes in soil moisture, temperature, and nitrogen availability. To a lesser extent, the temperature could be determined by regression analysis. Fine roots in the upper soil layer have a function of absorbing moisture and nutrients, while the main function of deeper soil may be moisture uptake rather than nutrient acquisition. Therefore, carbon allocation to roots in the upper soil layer and deeper soil layer was different. Multiple regression analysis showed that variation in soil resource availability could explain 71–73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass. These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability, which resulted in an increased allocation of carbohydrate to these roots, but a lower allocation of carbohydrate to those in soil with lower resource availability. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(3): 403–410 [译自: 植物生态学报, 2005, 29(3): 403–410]  相似文献   
978.
应用灰度对比法的原理建立了计算机X线片蛋鸡骨放射密度法。结果表明,铝阶厚度与灰度之间呈显著的线性关系(P〈0.01,r=0.997),铝阶厚度变化可准确反映蛋鸡骨骼骨量变化,不同曝光条件对骨量值无明显的影响(P〉0.05)。该方法简便,精确,重复性好,经济,为研究蛋鸡骨质疏松症提供重要的检测手段。  相似文献   
979.
Patterns of abundance across a species''s reproductive range are influenced by ecological and environmental factors that affect the survival of offspring. For marine animals whose offspring must migrate long distances, natural selection may favour reproduction in areas near ocean currents that facilitate migratory movements. Similarly, selection may act against the use of potential reproductive areas from which offspring have difficulty emigrating. As a first step towards investigating this conceptual framework, we analysed loggerhead sea turtle (Caretta caretta) nest abundance along the southeastern US coast as a function of distance to the Gulf Stream System (GSS), the ocean current to which hatchlings in this region migrate. Results indicate that nest density increases as distance to the GSS decreases. Distance to the GSS can account for at least 90 per cent of spatial variation in regional nest density. Even at smaller spatial scales, where local beach conditions presumably exert strong effects, at least 38 per cent of the variance is explained by distance from the GSS. These findings suggest that proximity to favourable ocean currents strongly influences sea turtle nesting distributions. Similar factors may influence patterns of abundance across the reproductive ranges of diverse marine animals, such as penguins, eels, salmon and seals.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号