首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   457篇
  免费   23篇
  国内免费   9篇
  2024年   1篇
  2023年   5篇
  2022年   14篇
  2021年   17篇
  2020年   10篇
  2019年   13篇
  2018年   14篇
  2017年   11篇
  2016年   15篇
  2015年   26篇
  2014年   19篇
  2013年   39篇
  2012年   15篇
  2011年   13篇
  2010年   14篇
  2009年   23篇
  2008年   11篇
  2007年   10篇
  2006年   8篇
  2005年   11篇
  2004年   14篇
  2003年   14篇
  2002年   11篇
  2001年   19篇
  2000年   8篇
  1999年   10篇
  1998年   7篇
  1997年   15篇
  1996年   8篇
  1995年   9篇
  1994年   7篇
  1993年   10篇
  1992年   5篇
  1991年   10篇
  1990年   6篇
  1989年   1篇
  1988年   8篇
  1987年   1篇
  1986年   4篇
  1985年   8篇
  1984年   7篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1977年   1篇
  1976年   3篇
  1973年   1篇
排序方式: 共有489条查询结果,搜索用时 15 毫秒
171.
Visual sensation in vertebrates is triggered when light strikes retinal photoreceptor cells causing photoisomerization of the rhodopsin chromophore 11-cis-retinal to all-trans-retinal. The regeneration of preillumination conditions of the photoreceptor cells requires formation of 11-cis-retinal in the adjacent retinal pigment epithelium (RPE). Using the intrinsic fluorescence of all-trans-retinyl esters, noninvasive two-photon microscopy revealed previously uncharacterized structures (6.9 +/- 1.1 microm in length and 0.8 +/- 0.2 microm in diameter) distinct from other cellular organelles, termed the retinyl ester storage particles (RESTs), or retinosomes. These structures form autonomous all-trans-retinyl ester-rich intracellular compartments distinct from other organelles and colocalize with adipose differentiation-related protein. As demonstrated by in vivo experiments using wild-type mice, the RESTs participate in 11-cis-retinal formation. RESTs accumulate in Rpe65-/- mice incapable of carrying out the enzymatic isomerization, and correspondingly, are absent in the eyes of Lrat-/- mice deficient in retinyl ester synthesis. These results indicate that RESTs located close to the RPE plasma membrane are essential components in 11-cis-retinal production.  相似文献   
172.
Retinal pigment epithelial (RPE) cells mediate the recognition and clearance of effete photoreceptor outer segments (POS), a process central to the maintenance of normal vision. Given the emerging importance of Toll-like receptors (TLRs) in transmembrane signaling in response to invading pathogens as well as endogenous substances, we hypothesized that TLRs are associated with RPE cell management of POS. TLR4 clusters on human RPE cells in response to human, but not bovine, POS. However, TLR4 clustering could be inhibited by saturating concentrations of an inhibitory anti-TLR4 mAb. Furthermore, human POS binding to human RPE cells elicited transmembrane metabolic and calcium signals within RPE cells, which could be blocked by saturating doses of an inhibitory anti-TLR4 mAb. However, the heterologous combination of bovine POS and human RPE did not trigger these signals. The pattern recognition receptor CD36 collected at the POS-RPE cell interface for both homologous and heterologous samples, but human TLR4 only collected at the human POS-human RPE cell interface. Kinetic experiments of human POS binding to human RPE cells revealed that CD36 arrives at the POS-RPE interface followed by TLR4 accumulation within 2 min. Metabolic and calcium signals immediately follow. Similarly, the production of reactive oxygen metabolites (ROMs) was observed for the homologous human system, but not the heterologous bovine POS-human RPE cell system. As (a) the bovine POS/human RPE combination did not elicit TLR4 accumulation, RPE signaling, or ROM release, (b) TLR4 arrives at the POS-RPE cell interface just before signaling, (c) TLR4 blockade with an inhibitory anti-TLR4 mAb inhibited TLR4 clustering, signaling, and ROM release in the human POS-human RPE system, and (d) TLR4 demonstrates similar clustering and signaling responses to POS in confluent RPE monolayers, we suggest that TLR4 of RPE cells participates in transmembrane signaling events that contribute to the management of human POS.  相似文献   
173.
Recent analysis of the complete mosquito Anopheles gambiae genome has revealed a far higher number of opsin genes than for either the Drosophila melanogaster genome or any other known insect. In particular, the analysis revealed an extraordinary opsin gene content expansion, whereby half are long wavelength-sensitive (LW) opsin gene duplicates. We analyzed this genomic data in relationship to other known insect opsins to estimate the relative timing of the LW opsin gene duplications and to identify "missing" paralogs in extant species. The inferred branching patterns of the LW opsin gene family phylogeny indicate at least one early gene duplication within insects before the emergence of the orders Orthoptera, Mantodea, Hymenoptera, Lepidoptera, and Diptera. These data predict the existence of one more LW opsin gene than is currently known from most insects. We tested this prediction by using a degenerate PCR strategy to screen the hymenopteran genome for novel LW opsin genes. We isolated two LW opsin gene sequences from each of five bee species, Bombus impatiens, B. terrestris, Diadasia afflicta, D. rinconis, and Osmia rufa, including 1.1 to 1.2 kb from a known (LW Rh1) and 1 kb from a new opsin gene (LW Rh2). Phylogenetic analysis suggests that the novel hymenopteran gene is orthologous to A. gambiae GPRop7, a gene that is apparently missing from D. melanogaster. Relative rate tests show that LW Rh2 is evolving at a slower rate than LW Rh1 and, therefore, may be a useful marker for higher-level hymenopteran systematics. Site-specific rate tests indicate the presence of several amino acid sites between LW Rh1 and LW Rh2 that have undergone shifts in selective constraints after duplication. These sites and others are discussed in relationship to putative structural and functional differences between the two genes.  相似文献   
174.
Defects in the gene encoding carboxypeptidase E (CPE) in either mouse or human lead to multiple endocrine disorders, including obesity and diabetes. Recent studies on Cpe-/- mice indicated neurological deficits in these animals. As a model system to study the potential role of CPE in neurophysiology, we carried out electroretinography (ERG) and retinal morphological studies on Cpe-/- and Cpe fat/fat mutant mice. Normal retinal morphology was observed by light microscopy in both Cpe-/- and Cpe(fat/fat) mice. However, with increasing age, abnormal retinal function was revealed by ERG. Both Cpe-/- and Cpe fat/fat animals had progressively reduced ERG response sensitivity, decreased b-wave amplitude and delayed implicit time with age, while maintaining a normal a-wave amplitude. Immunohistochemical staining showed specific localization of CPE in photoreceptor synaptic terminals in wild-type (WT) mice, but in both Cpe-/- and Cpe fat/fat mice, CPE was absent in this layer. Bipolar cell morphology and distribution were normal in these mutant mice. Electron microscopy of retinas from Cpe fat/fat mice revealed significantly reduced spherule size, but normal synaptic ribbons and synaptic vesicle density, implicating a reduction in total number of vesicles per synapse in the photoreceptors of these animals. These results suggest that CPE is required for normal-sized photoreceptor synaptic terminal and normal signal transmission to the inner retina.  相似文献   
175.
176.
1. Butterflies have two pairs of extraocular photoreceptive neurons on the genitalia. Here we report that the genital photoreceptors have a crucial role in achieving copulation. 2. We first investigated mating behavior of the butterfly Papilio xuthus in an outdoor cage. The mating behavior consists of six steps: the male approaches the female (1), maneuvers into a ventor-to-ventor position with the female (2), searches the female's genitalia (3), clasps the genitalia (4), the pair copulates (5), and finally separates (6). 3. We bilaterally ablated the P1 pair of photoreceptors, in the males, and observed mating behavior with virgin females. Of the intact males 66% copulated successfully, whereas only about 25% of the treated males could copulate. About 40% of P1 ablated males stopped the mating behavior during step 3: the males could not locate the female's genitalia. P1 ablation in females did not have a clear effect in this study. 4. Electrophysiological measurements showed that the P1 response of a male drops sharply when it correctly locates the female's genitalia. We hypothesize that the sharp drop in the P1 response informs the male that the female's vagina is correctly positioned for penis insertion. The P1 ablated males never experience such␣a␣response drop, as there is no P1 response to begin with. Accepted: 18 October 1996  相似文献   
177.
We have analyzed light induction of side-branch formation and chloroplast re-arrangement in protonemata of the mossCeratodon purpureus. After 12 hr of dark adaptation, the rate of branch formation was as low as 5%. A red light treatment induced formation of side branches up to 75% of the dark-adapted protonema. The frequency of light induced branch formation differed between cells of different ages, the highest frequency being found in the 5th cell, the most distal cell studied from the apex. We examined the effect of polarized light given parallel to the direction of filament growth. The position of branching within the cell depended on the vibration plane of polarized red light. Branch formation was highest when the electric vector of polarized light vibrates parallel to the cell surface and is fluence rate dependent. The positional effect of polarized red light could be nullified to some extent by simultaneous irradiation with polarized far-red light. An aphototropic mutant,ptr116, shows characteristics of deficiency in biosynthesis of the phytochrome chromophore and exhibits no red-light induced branch formation. Biliverdin, a precursor of the phytochrome chromophore, rescued the red-light induced branching when added to the medium, supporting the conclusion that phytochrome acts as photoreceptor for red light induced branch formation. The light effect on chloroplast re-arrangement was also analyzed in this study. We found that polarized blue light induced chloroplast re-arrangement in wild-type cells, whereas polarized red light was inactive. This result suggests that chloroplast re-arrangement is only controlled by a blue light photoreceptor, not by phytochrome inCeratodon.  相似文献   
178.
Lamparter T  Hughes J  Hartmann E 《Planta》1998,206(1):95-102
In darkness, protonemal filaments of Ceratodon purpureus (Brid.) grow negatively gravitropically (upwards). Red light induces a positive phototropic response mediated by the photoreceptor phytochrome. A red light treatment also has an inhibitory effect on the gravitropic response, an effect also mediated by phytochrome. In this study the effects of blue light on phototropism and on gravitropism were analysed. Unilateral blue light resulted in only a weak phototropic response, but markedly randomised growth direction. Blue light given together with a gravitropic stimulus reversed the gravitropism, changing it from negative to positive (filaments grow downward). The effect of blue light was also analysed with the mutant ptr116, which is defective in the biosynthesis of the phytochrome chromophore, and in a newly isolated mutant wwr2, which is positively gravitropic in darkness. Blue light induced the same reversal of gravitropism in ptr116 as in the wild type, indicating that phytochrome is not involved in this process. In wwr2 the direction of gravitropism was unaltered by the blue light treatment. Light also affects chlorophyll content and the size of plastids, potential statoliths for gravitropism. Red light induced an increase in plastid size and chlorophyll content in the wild type but not in ptr116. Blue light induced a similar change in wild type plastids. It seems as though light-induced alterations of gravitropism are not simply mediated by alterations in plastid properties, and that red light and blue light evoke fundamentally different responses. Received: 11 July 1997 / Accepted: 30 January 1998  相似文献   
179.
In the presence of 0.2 μ M IAA both the wild type and the aurea mutant of Lycopersicon esculentum Mill, showed a low but significant percentage of bud formation in the dark, whereas no bud formation occurred in the dark when 20 μ M IAA was present in the medium. In both systems blue light always showed a strong promoting effect on bud regeneration, both as final percentage of regeneration and by shortening the initial lag period, suggesting the action of a specific blue light photoreceptor. Red and far-red light increased the percentage of bud differentiation in wild type explants, with both the IAA concentrations. In the aurea mutant only red at the lowest IAA concentration had such an effect. The final percentage of bud regeneration under red light was greater or equal to that found under blue light in the wild type as well as in the aurea mutant explants cultured in the presence of the lowest IAA concentration.  相似文献   
180.
The adaptation of plant growth and development to changes in the light environment is dependent upon photoperception by information transducing photoreceptors. The red/far-red light-absorbing phytochromes are perhaps the best characterized of these regulatory photoreceptors. Higher plants possess multiple, discrete phytochromes, the apoprotein components of which are the products of a small, divergent gene family. Different phytochromes have different biochemical and physiological properties, and are differentially expressed in the growing plant. This has led to the proposal that different phytochromes have different physiological roles. Mutations that disrupt the normal perception of light signals have proved to be a valuable resource in assigning physiological roles to different phytochromes as well as in identifying residues/domains critical for phytochrome function and in attempting to elucidate the signal transduction pathway(s) downstream of phytochromes. This article reviews some recent progress in these areas from the study of conventional and transgenic photomorphogenic mutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号