首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18313篇
  免费   1100篇
  国内免费   764篇
  20177篇
  2023年   243篇
  2022年   310篇
  2021年   467篇
  2020年   431篇
  2019年   444篇
  2018年   511篇
  2017年   426篇
  2016年   396篇
  2015年   483篇
  2014年   735篇
  2013年   1243篇
  2012年   593篇
  2011年   689篇
  2010年   584篇
  2009年   758篇
  2008年   946篇
  2007年   919篇
  2006年   887篇
  2005年   763篇
  2004年   740篇
  2003年   662篇
  2002年   606篇
  2001年   446篇
  2000年   391篇
  1999年   404篇
  1998年   410篇
  1997年   348篇
  1996年   340篇
  1995年   350篇
  1994年   320篇
  1993年   333篇
  1992年   292篇
  1991年   264篇
  1990年   249篇
  1989年   223篇
  1988年   208篇
  1987年   175篇
  1986年   144篇
  1985年   187篇
  1984年   244篇
  1983年   156篇
  1982年   166篇
  1981年   140篇
  1980年   118篇
  1979年   99篇
  1978年   89篇
  1977年   56篇
  1976年   50篇
  1975年   29篇
  1973年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
BackgroundSchiff base metal complexes are considered promising chemotherapeutic agents due to their potential application in cancer therapy.MethodsThe current work sought to synthesize a brand-new Schiff base ligand obtained from 2-hydroxybenzohydrazide and (E)− 1-(2-(p-tolyl)hydrazono)propan-2-one with metal ions which included Pd(II) and Zn(II) ions. Elemental analyses, FT-IR, mass spectra, 1H NMR, UV-Vis spectrometer, and computational analysis characterized the compound's structure. In vitro, the breast cancer cell line (MCF-7) was tested for its sensitivity to Schiff base (HL) and its Pd(II) and Zn(II) complexes. The half-maximal inhibitory concentration IC50 of the compounds was determined and used to perform the comet assay, which was carried out to reveal the photo-induced DNA damaging ability of the compounds of individual cells. Moreover, the compounds' effects on antioxidant defense systems of enzymes in cells: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and oxidant Malondialdehyde (MDA) were examined in MCF-7 cells.ResultsThe Pd(II) complex displayed approximately the same IC50 as Cisplatin, while Zn(II) complex had better activity than Cisplatin with very low IC50, 1.40 μg/ml. Significant alterations in SOD, CAT, GPx, and MDA production were discovered, inducing oxidative stress, enlarging ROS production, and reducing the antioxidant amount. This change was approximately similar in most compounds. Consequently, it promoted apoptosis, particularly the Zn(II) complex, which demonstrated an improved impact because of its ability to influence the antioxidant defense systems of enzymes, mostly SOD and GPx, besides increasing MDA levels.ConclusionIt can be concluded that Zn(II) complex is the most effective anticancer drug since it induced a very similar genotoxic effect as Cisplatin and has a very low IC50 value.  相似文献   
62.
Summary Commercially obtained cystine binding protein (CBP), an osmotic shock protein ofEscherichia coli, was studied in an effort to determine its binding characteristics. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE) analysis of commercially obtained CBP showed three protein bands. N-terminal amino acid microsequencing and subsequent computer search revealed that the sequence of one of these proteins (25-kDa) was nearly identical to histidine binding protein (HisJ) ofSalmonella typhimurium. Purification of CBP by HPLC yielded four protein peaks, of which one bound histidine exclusively. Binding was maximal at pH 5.0 to 6.0, at 4°C, did not require calcium or magnesium ions and was not inhibited by reduction of CBP disulfide bonds. Amino acids other than histidine or cystine did not bind to CBP. These data show that commercially available CBP is not a homogenous protein; it contains a histidine as well as a cystine binding component.  相似文献   
63.
Different CD95 (Fas/APO-1) isoforms and phosphory lated CD95 species were identified in human T and B cell lines. We had shown previously that the CD95 intracellular domain (IC), expressed as a glutathione S-transferase (GST) fusion protein in murine L929 fibroblasts, was phosphorylatedin vivo. GST-CD95IC was phosphorylatedin vitro by a kinase present in extracts from the human lymphocytic cell lines Jurkat and MP-1 and from murine L929 cells. Phosphoamino acid analysis indicated that phosphorylation occurred at multiple threonine residues and also at tyrosine (Tyr232 and Tyr291) and serine. Amino acids 191 to 275 of CD95 were sufficient for phosphorylation at threonine, tyrosine and serine and also mediated interaction with a 35 kDa cellular protein. Immuno-precipitation of CD95 and chemical cross-linking revealed CD95-associated proteins of approximately 35, 45 and 75 kDa. GST-CD95IC affinity chromatography detected binding of the 35 and 75 kDa protein species. The 75 kDa species may correspond to the CD95-associated proteins RIP or FAF1 and the 35 kDa protein may represent a TRADD analogue. These data indicate that several cellular proteins interact with CD95, possibly in a multi-protein complex, and that a kinase activity is associated with CD95 not onlyin vitro but alsoin vivo. Therefore, receptor phosphorylation may play a role in CD95 signal transduction. This work was in part supported by a grant from the Health Research Council of New Zealand (to JW).  相似文献   
64.
 CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) is one of the four known nickel enzymes. It is a bifunctional protein that catalyzes the oxidation of CO to CO2 at a nickel iron-sulfur cluster (Cluster C) and a remarkable condensation reaction between a methyl group (donated from a methylated corrinoid iron-sulfur protein), carbon monoxide, and coenzyme A to form acetyl-CoA at a separate nickel iron-sulfur cluster (Cluster A). This review focuses on the current understanding of the structure and function of Cluster A and on related model chemistry. It describes studies that uncovered the first example of a biological organometallic reaction sequence. The mechanism of acetyl-CoA synthesis includes enzymebound methylnickel, iron-carbonyl, and acylmetal intermediates. Discovery of the methylnickel species constituted the first example of an alkylnickel species in biology and unveiled a new biological role for nickel. Received: 10 April 1996 / Accepted: 4 July 1996  相似文献   
65.
Electrophoretic patterns of seed storage proteins, the high-molecular-weight glutenins and gliadins, were studied in 468 plants of the common wheat cultivar Chinese Spring regenerated from callus culture of immature embryos, in 115 plants grown from seeds treated with nitrosoethylurea and in 260 control plants. From 5 to 21 single grains were analysed from each plant. In these three groups, the frequency of inherited mutations causing the loss of all proteins controlled by a locus (null-mutations, probably caused by a chromosomal deficiency) was 0.69%, 2.07%, and 0.05% per locus (the differences were statistically significant), respectively, while that of mutations causing the loss of a single protein band was 0.11%, 0.33%, and 0.05%, respectively. The loss of all of the gliadins controlled by Gli-B1 or GH-B2 (mutations were probably caused by a deletion of satellites of the corresponding chromosomes), was significantly higher than the loss of gliadins controlled by genomes A and D. Gene mutations altering the electrophoretic mobility of a single protein band in the pattern were found only in the second group of plants (0.44%). Therefore, chemical mutagenesis which produced not only more mutations than cultivation of immature wheat embryos in vitro, but also a higher ratio of mutations that altered DNA sequences, can be considered as an easier and comparatively more promising way for obtaining new improved variants of loci controlling biochemical characteristics in wheat. Somaclonal variation, on the other hand, was probably mainly caused by chromosomal abnormalities and could therefore hardly be considered as a useful tool in wheat breeding.  相似文献   
66.
Phosphorylation and dephosphorylation of ribosomal proteins have been suggested to participate in the regulation of protein synthesis in eukaryotic organisms. The present research focuses on the purification and partial characterization of a protein kinase from maize ribosomes that specifically phosphorylates acidic ribosomal proteins. Ribosomes purified from maize axes were used as the enzyme source. Purification of ribosomes was performed by centrifugation through a 0.5 M sucrose, 0.8 M KCl cushion. A protein kinase activity present in this fraction was released by extraction with 1.5 M KCl and further purified by diethylaminoethyl cellulose column chromatography. A peak containing protein kinase activity was eluted around 400 m M KCl. Analysis of this fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed one band of 38 kDa molecular mass, which cross-reacted in a western blot with antibodies raised against proteins from the large ribosomal subunit. This enzyme specifically phosphorylates one of the acidic ribosomal proteins (P2). Its activity is inhibited by Ca2+ and Zn2+ and is activated by Mg2+, polylysine and spermine. The relevance of this protein kinase in reinitiating the protein synthesis process during germination is discussed.  相似文献   
67.
Localization and activity of three enzymes involved in the amino acid metabolism of ectomycorrhizas were investigated within an interdisciplinary experiment performed in a mature Norway spruce stand in Southern Germany (Höglwald). The enzymes NAD-glutamate dehydrogenase and aspartate aminotransferase were present in root cells, whereas aminopeptidase was found in mycorrhizas of Norway spruce such as Piceirhiza nigra and those with the fungi Cenococcum geophilum, Elaphomyces sp., Russula ochroleuca and Tylospora sp. Mycorrhizas growing in the humus layer contained about double the amount of protein found in those taken from the upper mineral soil (0–5 cm).Acid irrigation of the soil had no effect on the activity of any of the investigated enzymes, soluble protein or total N-contents irrespective of whether roots were taken from the organic layer or from the upper mineral soil. Liming, however, stimulated the activity of the three enzymes in mycorrhizas of the organic layer (Of+Oh) whereas it had no effect on the activity of the investigated enzymes of mycorrhizas in the upper mineral soil. This effect is attributed to increased contents of soluble organic nitrogen compounds in the soil of the limed plots as compared to the unlimed plots.  相似文献   
68.
69.
The important components of mucopolysaccharides and collagen have been analyzed in tissues of control and carcinoma of uterine cervix. Among these components hyaluronic acid and chondroitin sulphate levels were found to be increased, whereas decreased level of collagen was observed in uterine cervical carcinoma. Serum cathepsin B, D and acid and alkaline phosphatases have also been analyzed in controls and carcinoma patients before and after treatments. The activities of these enzymes have been found to increase prominently in advanced stages. Among these enzymes cathepsin B and alkaline phosphatase have exhibited remarkable increase in activity in uterine cervical carcinoma. Different modes of treatment exerted reversion of the elevated activities of these enzymes. However, combined therapy type II (radiation combined with cisplatin and cyclophosphomide) seems to be more effective in reverting the activities of these enzymes to normal levels.  相似文献   
70.
The ability of aras protein to associate with proteins present in rat brain cytosolin vitro was investigated using chemical cross-linking agents and the125I-labelled v-H-ras protein. Two iodinated protein complexes with apparent molecular weights of 40 and 85 kDa were observed when a mixture of rat brain cytosol and [125I]ras was treated with the cross-linking agent disuccinimidyl suberate and subjected to SDS-PAGE. Formation of the [125I] 85 kDa complex was enhanced by a high concentration of EDTA while generation of the 40 kDa species was abolished by this treatment. Formation of the [125I] 85 kDa complex was inhibited by unlabelledras protein, GTP, GTPS, and GDP but not by ATPS and GMP.Chromatography of the cross-linked brain cytosol-[125I]ras mixture on DEAE cellulose partially resolved the [125I] 85 kDa complex from the [125I]ras protein. The [125I] 85 kDa complex (formed using ethyleneglycolbis (succinimidylsuccinate) as the cross-linking agent) could be immunoprecipitated using a rabbit anti-ras polyclonal antibody. Treatment of the immunoprecipitate with hydroxylamine to cleave the cross-link yielded [125I]-labelledras. A substantial enrichment of the proportion of the [125I] 85 kDa complex in the cross-linked extract was achieved by preparative SDS-PAGE. It is concluded that thein vitro chemical cross-linking approach employed here has detected tworas binding proteins in rat brain cytosol: a 65 kDa heat-sensitive and a 20 kDa heat-stable protein. The possibility that the 65 kDaras binding protein is aras regulatory orras effector protein which has not so far been characterised is briefly discussed.Abbreviations DSS disuccinimidyl suberate - EGS ethyleneglycolbis (succinimidylsuccinate) - GTPS guanosine 5-[-thio] triphosphate - ATPS adenosine 5-[-thio] triphosphate  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号