首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1765篇
  免费   93篇
  国内免费   22篇
  1880篇
  2023年   30篇
  2022年   26篇
  2021年   44篇
  2020年   46篇
  2019年   66篇
  2018年   53篇
  2017年   32篇
  2016年   42篇
  2015年   68篇
  2014年   89篇
  2013年   101篇
  2012年   44篇
  2011年   53篇
  2010年   47篇
  2009年   57篇
  2008年   56篇
  2007年   64篇
  2006年   64篇
  2005年   60篇
  2004年   51篇
  2003年   53篇
  2002年   44篇
  2001年   28篇
  2000年   28篇
  1999年   24篇
  1998年   38篇
  1997年   30篇
  1996年   30篇
  1995年   25篇
  1994年   30篇
  1993年   24篇
  1992年   29篇
  1991年   29篇
  1990年   22篇
  1989年   22篇
  1988年   32篇
  1987年   16篇
  1986年   15篇
  1985年   30篇
  1984年   38篇
  1983年   12篇
  1982年   29篇
  1981年   17篇
  1980年   21篇
  1979年   17篇
  1978年   19篇
  1977年   21篇
  1976年   15篇
  1972年   10篇
  1971年   10篇
排序方式: 共有1880条查询结果,搜索用时 15 毫秒
111.
薛庆  于垂恭  于磊  武国军  袁建林 《生物磁学》2013,(25):4829-4832,4850
目的:已经有研究证明肝再生磷酸酶3(PhosphataseofRegeneratingLiver-3,PRL-3)在消化道肿瘤的发生发展过程中起到重要作用,但其在膀胱癌中发挥何种作用尚不清楚,本次研究主要探寻PRL-3在膀胱癌细胞T24中作用,以求为膀胱癌的治疗提供新思路。方法:采用siRNA干涉的方法下调T24中PRL-3蛋白表达水平,通过westernblot方法检测干涉效果,绘制细胞生长曲线、构建裸鼠种植瘤模型,检测PRL-3下调对细胞体外及体内增殖的影响。结果:我们所设计的siRNA能够下调PRL-3在A498细胞中的表达(F=7.26,P〈0.05),细胞生长曲线显示下调PRL-3能够抑制细胞的增殖,这种作用从干涉后的第60h开始,随时间增加作用愈加明显(F≥8.35,P〈0.05);动物实验表明,siRNA下调PRL-3能够抑制T24细胞在活体内的增殖,从干涉后第21天开始这种作用开始体现出来(F≥10.46,P〈0.05),并且干涉组的肿瘤肿瘤明显低于两个对照组(F=13.63,P〈0.05)。结论:我们构建的siRNA能够在T24细胞中实现对PRL.3蛋白的下调,siRNA介导的PRL-3蛋白下调能够明显抑制T24细胞在活体外及活体内的增殖,这初步证明PRL-3在膀胱癌中发挥重要的作用。随着我们对PRL-3分子进一步深入的了解,揭示其发挥作用的具体机制,PRL-3很可能成为膀胱癌基因治疗的新靶点。  相似文献   
112.
《Autophagy》2013,9(3):480-496
In phagocytic cells, including the retinal pigment epithelium (RPE), acidic compartments of the endolysosomal system are regulators of both phagocytosis and autophagy, thereby helping to maintain cellular homeostasis. The acidification of the endolysosomal system is modulated by a proton pump, the V-ATPase, but the mechanisms that direct the activity of the V-ATPase remain elusive. We found that in RPE cells, CRYBA1/βA3/A1-crystallin, a lens protein also expressed in RPE, is localized to lysosomes, where it regulates endolysosomal acidification by modulating the V-ATPase, thereby controlling both phagocytosis and autophagy. We demonstrated that CRYBA1 coimmunoprecipitates with the ATP6V0A1/V0-ATPase a1 subunit. Interestingly, in mice when Cryba1 (the gene encoding both the βA3- and βA1-crystallin forms) is knocked out specifically in RPE, V-ATPase activity is decreased and lysosomal pH is elevated, while cathepsin D (CTSD) activity is decreased. Fundus photographs of these Cryba1 conditional knockout (cKO) mice showed scattered lesions by 4 months of age that increased in older mice, with accumulation of lipid-droplets as determined by immunohistochemistry. Transmission electron microscopy (TEM) of cryba1 cKO mice revealed vacuole-like structures with partially degraded cellular organelles, undigested photoreceptor outer segments and accumulation of autophagosomes. Further, following autophagy induction both in vivo and in vitro, phospho-AKT and phospho-RPTOR/Raptor decrease, while pMTOR increases in RPE cells, inhibiting autophagy and AKT-MTORC1 signaling. Impaired lysosomal clearance in the RPE of the cryba1 cKO mice also resulted in abnormalities in retinal function that increased with age, as demonstrated by electroretinography. Our findings suggest that loss of CRYBA1 causes lysosomal dysregulation leading to the impairment of both autophagy and phagocytosis.  相似文献   
113.
114.
Recently, we established a protocol for the cultivation of primary porcine oviduct epithelial cells (POEC), which promoted tissue-like morphology for a prolonged culture period. The present study focuses on developing this model into a comprehensive, standardized culture system, as a candidate tool for reproductive toxicity testing and basic research. We cultivated POEC isolated from 25 animals in our culture system for both 3 and 6 weeks and systematically analyzed effects of medium conditioning, supplementation with standardized sera, and culture duration in both freshly isolated and cryopreserved cells. The differentiation status was evaluated via histomorphometry, transepithelial electrical resistance (TEER) measurement, and expression analyses. The culture system possessed high reproducibility, more than 95% of cultures achieved a fully differentiated phenotype. Cells recapitulated in vivo–like morphology and ultrastructure from 3 to 6 weeks. Cryopreservation of the cells prior to cultivation did not affect culture quality of POEC. Employment of conditioned medium ensured optimal promotion of POEC differentiation, and different standardized sera induced fully differentiated phenotypes. Consistent TEER establishment indicated the presence and maintenance of cell type–specific intercellular junctions. The functionality of POEC was proven by consistent mucin secretion and stable expression of selected markers over the whole culture duration. We conclude that POEC are suitable for experiments from 3 weeks up to at least 6 weeks of culture. Therefore, this culture system could be used for in vitro estrous cycle simulation and long-term investigation of toxic effects on oviduct epithelium.  相似文献   
115.
An Na+-dependent active process for myo-inositol (MI) uptake, sharing a common carrier system with glucose and sensitive to phlorizin, was previously established in primary cultures of bovine retinal pigment epithelial (RPE) cells (26, 32). The present report further examines the nature of glucose-induced inhibition of MI transport in primary cultures of RPE cells. RPE cells were grown in supplemented Dulbecco's modification of Eagle's medium (DMEM) containing 5 mM D-glucose (basic growth media) or 40 mM D-glucose or its nonmetabolizable analogue, α-methyl-D-glucoside (αMG); 1–5 mM nonradioactive MI, pyruvate, or lactate; or 0.2–20 µM phorbol 12-myristate 13-acetate (TPA) or straurosporin (modified growth media), for up to 4 weeks. The capacity of RPE cells to accumulate 3H-MI (ratios of intracellular transported radioactive MI, [MI]i, to external free MI concentration, [MI]i/[MI]0) decreased by up to 41% or 34% when cells were grown for 10 days or longer with 40 mM D-glucose or 40 mM αMG, respectively, compared to cells grown in basic growth media. The rate of uptake of 3H-MI also was reduced to 63 ± 15% or 48 ± 8% of the control values when cells were fed 1 or 5 mM nonradioactive MI, respectively. In addition, cellular capacity to bind to [3H]phlorizin was reduced to 52 ± 7%, 61 ± 5%, or 38 ± 6% of the controls when RPE cells were fed 40 mM D-glucose, 40 mM αMG, or 5 mM nonradioactive MI, respectively. Growth media containing either pyruvate or lactate, the glucose metabolites, did not suppress the ability of RPE cells to accumulate MI. An 18 ± 8% reduction in [3H]thymidine incorporation into DNA occurred when cells were grown in 40 mM glucose for 12–14 days, compared to cells grown with 5 mM glucose. Chronic treatment (12–14 days) of the cells with phorbol ester, an activator of protein kinase C, caused up to twofold increase in MI uptake, [3H]phlorizin binding, cell number, and DNA synthesis. However, when the rates of MI uptake into cells grown in basic growth media or TPA-treated media were normalized to cell number, no significant difference in MI uptake was found between the treated and untreated cells. Addition of staurosporin, a protein kinase C inhibitor, together with TPA, in the growth media reversed the phorbol-induced increase of MI uptake. In contrast to its chronic effect, a 60-min incubation (acute effect) of cells in the presence of TPA, with or without inclusion of stauropsorin, did not alter the uptake of 3H-MI into RPE cells, regardless of glucose levels in the growth media. These studies indicated that glucose itself, and not glucose metabolites, regulated uptake of MI into primary cultures of RPE cells. In addition, glucose-induced down-regulation of MI uptake was not mediated through the protein kinase C pathway, but the staurosporin-inhibited, TPA-stimulated protein kinase C was partly responsible for growth and proliferation of RPE cells.  相似文献   
116.
Alterations in corneal innervations result in impaired corneal sensation, severe dry eye and damage to the epithelium that may in turn lead to corneal ulcers, melting and perforation. These alterations can occur after refractive surgery. We have discovered that pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA or the docosanoid bioactive neuroprotectin D1 (NPD1)) induces nerve regeneration after corneal surgery that damages the stromal nerves. We found that PEDF is released from corneal epithelial cells after injury, and when DHA is provided to the cells it stimulates the biosynthesis of NPD1 by an autocrine mechanism. The combination of PEDF plus DHA also decreased the production of leukotriene B4 (LTB4), a neutrophil chemotactic factor, thereby decreasing the inflammation induced after corneal damage. These studies suggest that PEDF plus DHA and its derivative NPD1 hold promise as a future treatment to restore a healthy cornea after nerve damage.  相似文献   
117.
ABSTRACT

As standard second-line regimen has not been established for patients who are refractory to or relapse with cisplatin-based chemotherapy, an effective class of novel chemotherapeutic agents is needed for cisplatin-resistant bladder cancer. Recent publications reported that MutT homolog 1 (MTH1) inhibitors suppress tumor growth and induce impressive therapeutic responses in a variety of human cancer cells. Few studies investigated the cytotoxic effects of MTH1 inhibitors in human bladder cancer. Accordingly, we investigated the antitumor effects and the possible molecular mechanisms of MTH1 inhibitors in cisplatin-sensitive (T24) and – resistant (T24R2) human bladder cancer cell lines. These results suggest that TH588 or TH287 may induce cancer cell suppression by off-target effects such as alterations in the expression of apoptosis- and cell cycle-related proteins rather than MTH1 inhibition in cisplatin-sensitive and – resistant bladder cancer cells.

Abbreviations: MTH: MutT homolog; ROS: reactive oxygen species; CCK-8: cell counting kit-8; DCFH-DA: dichlorofluorescein diacetate; PARP: poly (ADP-ribose) polymerase  相似文献   
118.
As an inhibitor of apoptosis (IAP) family member, Survivin is known for its role during regulation of apoptosis. More recently its function as a cell cycle regulator has become evident. Survivin was shown to play a pivotal role during embryonic development and is highly expressed in regenerative tissue as well as in many cancer types. We examined the function of Survivin during mouse intestinal organogenesis and in gut pathophysiology. We found high expression of Survivin in experimentally induced colon cancer in mice but also in colon tumors of humans. Moreover, Survivin was regulated by TGF-β and was found to be highly expressed during mucosal healing following intestinal inflammation. We identified that expression of Survivin is essential early on in life, as specific deletion of Survivin in Villin expressing cells led to embryonic death around day 12 post coitum. Together with our recent study on the role of Survivin in the gut of adult mice our data demonstrate that Survivin is an essential guardian of embryonic gut development and adult gut homeostasis protecting the epithelium from cell death promoting the proliferation of intestinal stem and progenitor cells.  相似文献   
119.
120.
Incomplete tear film spreading and eyelid closure can cause defective renewal of the ocular surface and air exposure‐induced epithelial keratopathy (EK). In this study, we characterized the role of autophagy in mediating the ocular surface changes leading to EK. Human corneal epithelial cells (HCECs) and C57BL/6 mice were employed as EK models, respectively. Transmission electron microscopy (TEM) evaluated changes in HCECs after air exposure. Each of these models was treated with either an autophagy inhibitor [chloroquine (CQ) or 3‐methyladenine (3‐MA)] or activator [Rapamycin (Rapa)]. Immunohistochemistry assessed autophagy‐related proteins, LC3 and p62 expression levels. Western blotting confirmed the expression levels of the autophagy‐related proteins [Beclin1 and mammalian target of rapamycin (mTOR)], the endoplasmic reticulum (ER) stress‐related proteins (PERK, eIF2α and CHOP) and the PI3K/Akt/mTOR signalling pathway‐related proteins. Real‐time quantitative PCR (qRT‐PCR) determined IL‐1β, IL‐6 and MMP9 gene expression levels. The TUNEL assay detected apoptotic cells. TEM identified autophagic vacuoles in both EK models. Increased LC3 puncta formation and decreased p62 immunofluorescent staining and Western blotting confirmed autophagy induction. CQ treatment increased TUNEL positive staining in HCECs, while Rapa had an opposite effect. Similarly, CQ injection enhanced air exposure‐induced apoptosis and inflammation in the mouse corneal epithelium, which was inhibited by Rapa treatment. Furthermore, the phosphorylation status of PERK and eIF2α and CHOP expression increased in both EK models indicating that ER stress‐induced autophagy promoted cell survival. Taken together, air exposure‐induced autophagy is indispensable for the maintenance of corneal epithelial physiology and cell survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号