首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2090篇
  免费   292篇
  国内免费   59篇
  2024年   4篇
  2023年   30篇
  2022年   32篇
  2021年   58篇
  2020年   84篇
  2019年   105篇
  2018年   74篇
  2017年   93篇
  2016年   121篇
  2015年   109篇
  2014年   132篇
  2013年   111篇
  2012年   85篇
  2011年   132篇
  2010年   79篇
  2009年   154篇
  2008年   117篇
  2007年   126篇
  2006年   103篇
  2005年   95篇
  2004年   82篇
  2003年   64篇
  2002年   50篇
  2001年   42篇
  2000年   33篇
  1999年   35篇
  1998年   35篇
  1997年   17篇
  1996年   24篇
  1995年   19篇
  1994年   14篇
  1993年   13篇
  1992年   17篇
  1991年   23篇
  1990年   8篇
  1989年   16篇
  1988年   13篇
  1987年   4篇
  1986年   11篇
  1985年   7篇
  1984年   10篇
  1983年   7篇
  1981年   7篇
  1980年   12篇
  1979年   6篇
  1978年   7篇
  1977年   6篇
  1976年   5篇
  1975年   5篇
  1974年   3篇
排序方式: 共有2441条查询结果,搜索用时 265 毫秒
61.
62.
Central to understanding the nature TSE agents (or prions) is how their genetic information is distinguished from the host. Are TSEs truly infectious diseases with host-independent genomes, or are they aberrations of a host component derived from the host genome? Recent experiments tested whether glycosylation of host PrP affects TSE strain characteristics. Wild-type mice were infected with 3 TSE strains passaged through transgenic mice with PrP devoid of glycans at 1 or both N-glycosylation sites. Strain-specific characteristics of 1 TSE strain changed but did not change for 2 others. Changes resulted from the selection of mutant TSE strains in a novel replicative environment. In general the properties of established TSEs support the genetic independence of TSE agents from the host, and specifically the primary structure of PrP does not directly encode TSE agent properties. However sporadic TSEs, challenge this independency. The prion hypothesis explains emerging TSEs relatively successfully but poorly accounts for the diversity and mutability of established TSE strains, or how many different infectious conformations are sustained thermodynamically. Research on early changes in RNA expression and events at the ribosome may inform the debate on TSE agent properties and their interaction with host cell machinery.  相似文献   
63.
Enhancements to memory are associated with enhanced neural structures that support those capabilities. A great deal of work has examined this relationship in the context of natural variation in spatial memory capability and hippocampal (Hp) structure. Most studies have focused on volumetric and neuron measures, but have seldom examined the role of glial cells. Once considered involved only in supportive functions associated with neurons, the importance of glial cells in cognitive processes, including memory, is gaining more attention. Building upon our previous study on the relationship between the brain, memory, and environmental severity in food‐caching birds, we compared the total number of Hp glial cells in wild‐sampled and in lab‐reared (common garden) black‐capped chickadees (Poecile atricapillus) originating from two different environmental extremes. We found that birds from more harsh climate tended to have significantly more Hp glial cells than those from more mild climate and that lab‐reared chickadees had significantly fewer Hp glial cells compared to the wild‐sampled birds. These results suggest that population differences in glial numbers may be controlled, at least in part, by heritable mechanisms, but glial numbers appear to be additionally regulated by an individual's environment. The pattern of Hp glial cell abundance among our treatment groups closely followed that of the Hp volume, suggesting that Hp glial cell number may be associated with the Hp volume. Unlike Hp neurons, however, the number of Hp glial cells may be, at least in part, affected by an individual's experiences and environment. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 480–485, 2013  相似文献   
64.
65.
觅食活动是动物生存和繁殖所必需的基本的活动,受个体生理状态(如饥饿)和环境状况(如捕食、食物可利用性)时空变化的影响,能量状态-风险分配假说指出,动物在应对不同风险时会优化觅食和反捕食努力的时间和能量分配。然而,有关啮齿动物觅食决策的能量状态-捕食风险分配假说的研究结论尚不统一。本研究在野外实验室以艾鼬(Mustela eversmannii)气味作为捕食风险刺激源,以非捕食者(马)气味源作为对照,首先通过Y型观测箱检验雌性饥饿长爪沙鼠(Meriones unguiculatus)对捕食者气味的辨别能力(Wilcoxon 秩检验);在此基础上通过中立场行为观测箱分别测定饥饿雌鼠在“有食物和天敌气味源”与“有食物和非天敌气味源”环境下的觅食活动,采用Mann-Whitney Z检验比较两者间的行为差异,以验证急性捕食风险限制饥饿沙鼠觅食活动的假设,并探讨动物在饥饿风险与捕食风险共存情况下的觅食行为对策。结果显示,(1)长爪沙鼠对天敌气味反应明显,厌恶和回避有较高潜在捕食风险的空间;(2)虽然觅食潜伏期在捕食风险存在时有所增加,但急性捕食风险并未影响饥饿沙鼠的觅食频次,沙鼠通过缩短每次觅食的持续时间来应对捕食风险;与此同时,(3)饥饿沙鼠在急性捕食风险条件下对环境探究的次数明显增加,一定程度上提高反捕食努力,且自我修饰表现显著,以缓释捕食压力的恐惧效应。这些结果表明,急性捕食风险不能完全抑制饥饿沙鼠的觅食努力,在有捕食风险情况下,饥饿的长爪沙鼠会权衡觅食获取能量和避免捕食的收益和代价,优化觅食策略。本研究结果支持能量状态-风险分配假说关于在短期高风险情况下反捕食努力分配更多,但当动物在饥饿风险持续时间比例显著增加时,动物最终也必须在高风险情况下觅食的预测,也反映了长爪沙鼠对食物资源不可预测及捕食风险高的干旱半干旱荒漠环境的行为适应对策。  相似文献   
66.
Positive species interactions are ubiquitous in natural communities, but the mechanisms through which they operate are poorly understood. One proposed mechanism is resource conversion – the conversion by a benefactor species of a resource from a resource state that is inaccessible to a potential beneficiary species into a resource state that is accessible. Such conversion often occurs as a byproduct of resource consumption, and sometimes in exchange for non-resource benefits to the benefactor species. At least five known classes of interactions, including both facilitative and mutualistic ones, may be classified as resource conversion interactions. We formulated a generalizable mathematical model for resource conversion interactions and examined two model variants that represent processing chain and nurse plant interactions. We examined the conditions under which these conformed to the stress-gradient hypothesis (SGH), which predicts increased interaction benefits in more stressful environments. These yielded four key insights: 1) resource conversion interactions can be positive (towards the resource recipient) only when facilitator-mediated resource conversion is more efficient than the baseline, spontaneous, facilitator-independent resource conversion; 2) the sign of resource conversion interaction outcomes never switches (e.g. from net positive to net negative) with changing levels of resource availability, when all other parameters are kept constant; 3) processing chain interactions at equilibrium can never be positive in a manner that conforms to the SGH; 4) nurse plant interactions can be positive and conform to the SGH, although the manner in which they do depends largely on how resource stress is defined, and the environmental supply rate of surface soil moisture. The first two insights are likely to be generalizable across all resource conversion interactions. The general agreement of the model with empirical studies suggest that resource conversion is the mechanism underlying the aforementioned interactions, and an ecologically meaningful way of classifying these previously unassociated positive species interactions.  相似文献   
67.
Species diversity patterns are governed by complex interactions among biotic and abiotic factors over time and space, but are essentially the result of the diversification dynamics (differential speciation and extinction rates) over the long-term evolutionary history of a clade. Previous studies have suggested that temporal variation in global temperature drove long-term diversity changes in Crocodylia, a monophyletic group of large ectothermic organisms. We use a large database of crocodylian fossil occurrences (192 spp.) and body mass estimations, under a taxic approach, to characterize the global diversification dynamics of crocodylians since the Cretaceous, and their correlation with multiple biotic and abiotic factors in a Bayesian framework. The diversification dynamic of crocodylians, which appears to have originated in the Turonian (c. 92.5 Ma), is characterized by several phases with high extinction and speciation rates within a predominantly low long-term mean rate. Our results reveal long-term diversification dynamics of Crocodylia to be a highly complex process driven by a combination of biotic and abiotic factors which influenced the speciation and extinction rates in dissimilar ways. Higher crocodylian extinction rates are related to low body mass disparity, indicating selective extinctions of taxa at both ends of the body mass spectrum. Speciation rate slowdowns are noted when the diversity of the clade is high and the warm temperate climatic belt is reduced. Our finding supports the idea that temporal variations of body mass disparity, self-diversity, and the warm climate belt size provided more direct mechanistic explanations for crocodylian diversification than do proxies of global temperature.  相似文献   
68.

Background and Aims

Subtribe Centaureinae appears to be an excellent model group in which to analyse satellite DNA and assess the influence that the biology and/or the evolution of different lineages have had on the evolution of this class of repetitive DNA. Phylogenetic analyses of Centaureinae support two main phases of radiation, leading to two major groups of genera of different ages. Furthermore, different modes of evolution are observed in different lineages, reflected by morphology and DNA sequences.

Methods

The sequences of 502 repeat units of the HinfI satellite DNA family from 38 species belonging to ten genera of Centaureinae were isolated and compared. A phylogenetic reconstruction was carried out by maximum likelihood and Bayesian inference.

Key Results

Up to eight different HinfI subfamilies were found, based on the presence of a set of diagnostic positions given by a specific mutation shared by all the sequences of one group. Subfamilies V–VIII were mostly found in older genera (first phase of radiation in the subtribe, late Oligocene–Miocene), although some copies of these types of repeats were also found in some species of the derived genera. Subfamilies I–IV spread mostly in species of the derived clade (second phase of radiation, Pliocene to Pleistocene), although repeats of these subfamilies exist in older species. Phylogenetic trees did not group the repeats by taxonomic affinity, but sequences were grouped by subfamily provenance. Concerted evolution was observed in HinfI subfamilies spread in older genera, whereas no genetic differentiation was found between species, and several subfamilies even coexist within the same species, in recently radiated groups or in groups with a history of recurrent hybridization of lineages.

Conclusions

The results suggest that the eight HinfI subfamilies were present in the common ancestor of Centaureinae and that each spread differentially in different genera during the two main phases of radiation following the library model of satellite DNA evolution. Additionally, differential speciation pathways gave rise to differential patterns of sequence evolution in different lineages. Thus, the evolutionary history of each group of Centaureinae is reflected in HinfI satellite DNA evolution. The data reinforce the value of satellite DNA sequences as markers of evolutionary processes.  相似文献   
69.
70.

Background and Aims

Understanding the factors that shape variation in genetic diversity across the geographic ranges of species is an important challenge in the effort to conserve evolutionary processes sustaining biodiversity. The historical influences leading to a central–marginal organization of genetic diversity have been explored for species whose range is known to have expanded from refugia after glacial events. However, this question has rarely been addressed for Mediterranean endemic plants of azonal habitats such as rocky slopes or screes. In this context, this comprehensive study examined molecular and field data from Arenaria provincialis (Caryophyllaceae), a narrow endemic plant of south-eastern France.

Methods

Across the whole geographic range, an investigation was made of whether high levels of abundance and genetic diversity (estimated from amplified fragment length polymorphism markers) are centrally distributed, to evaluate the relevance of the central–marginal hypothesis. Phylogeographic patterns inferred from chloroplast DNA (cpDNA) were used, applying Bayesian methods to test the influence of past biogeographic events. Multivariate analysis combining phylogeographic and ecological data was used to reveal the historical and ecological distinctiveness of populations.

Key Results

Despite the narrow distribution of A. provincialis, a high level of nucleotide variation is found within cpDNA loci, supporting its persistence throughout the Pleistocene period. The area characterized by the highest genetic diversity is centrally located. Structured phylogeography and Bayesian factor analysis supported the hypothesis that the central area of the distribution was the source of both westward and eastward migrations, probably during arid periods of the Pleistocene, and more recently was a crossroads of backward migrations. By contrast, the two areas located today at the range limits are younger, have reduced genetic diversity and are marginal in the ecological gradients.

Conclusions

This study highlights a case of strong population distinctiveness within a narrow range. Phylogeography sheds light on the historical role of the areas centrally situated in the distribution. The current range size and abundance patterns are not sufficient to predict the organization of genetic diversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号