首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1039篇
  免费   15篇
  国内免费   57篇
  1111篇
  2023年   4篇
  2022年   8篇
  2021年   16篇
  2020年   15篇
  2019年   20篇
  2018年   17篇
  2017年   19篇
  2016年   22篇
  2015年   42篇
  2014年   69篇
  2013年   67篇
  2012年   76篇
  2011年   107篇
  2010年   72篇
  2009年   36篇
  2008年   42篇
  2007年   48篇
  2006年   41篇
  2005年   41篇
  2004年   25篇
  2003年   43篇
  2002年   30篇
  2001年   10篇
  2000年   12篇
  1999年   13篇
  1998年   7篇
  1997年   9篇
  1996年   9篇
  1995年   4篇
  1994年   5篇
  1993年   13篇
  1992年   8篇
  1991年   3篇
  1990年   14篇
  1989年   7篇
  1988年   7篇
  1987年   8篇
  1986年   3篇
  1985年   11篇
  1984年   16篇
  1983年   16篇
  1982年   16篇
  1981年   13篇
  1980年   8篇
  1979年   9篇
  1977年   13篇
  1976年   4篇
  1975年   5篇
  1974年   3篇
  1969年   2篇
排序方式: 共有1111条查询结果,搜索用时 15 毫秒
71.
The pseudopterosins are a family of diterpene pentosides isolated from the marine octocoral, Pseudopterogorgia elisabethae. These compounds possess non-steroidal anti-inflammatory and analgesic properties which have been shown to be greater than the industry standard, indomethacin. In our investigations, we are interested in examining the biosynthesis and enzymology of these compounds for the development of a biotechnological production method. We have isolated the pseudopterosin diterpene cyclase product, elisabethatriene, using a radioactivity-guided isolation. This has provided us with an assay to isolate the diterpene cyclase enzyme. The amino acid sequence of the purified diterpene cyclase will facilitate cloning and expression of the gene in a suitable host. In addition, we have identified over 25 novel diterpenes from one of our collections of P. elisabethae. Several of these compounds appear to be involved in pseudopterosin biosynthesis and are presently being evaluated as potential intermediates. These compounds have also been evaluated for anti-inflammatory activity and some possess greater activity than that of the pseudopterosins. We therefore propose a production method utilizing a combination of recombinant enzyme technology and synthetic methods/biocatalysis in order to produce one or more anti-inflammatory metabolites in P. elisabethae.  相似文献   
72.
The epothilones are a family of macrolactone natural products from the myxobacterial species Sorangium cellulosum. Similar to taxol, they are of current clinical interest as anticancer agents. Sequence analysis of the epothilone gene cluster allowed the identification of polyketide synthase and nonribosomal peptide synthetase modules involved in catalyzing epothilone biosynthesis. Given this information, it has been possible to test the predicted functions of several modules to date. EpoA ACP, EpoB, and EpoC have been overproduced in Escherichia coli, allowing in vitro reconstitution of the EpoA/B/C interface and production of the expected epothilone precursor. Further experiments probed the tolerance of EpoB and EpoC for unnatural substrates. These studies of the first three modules of the epothilone biosynthetic cluster suggest that combinatorial biosynthesis may lead to the production of a variety of epothilone analogs that incorporate diversity into the heterocycle starter unit. Additional efforts with the remaining modules, coupled with increased understanding of the macrocyclizing thioesterase domain, may lead to the production of epothilone variants with improved clinical properties.  相似文献   
73.
The incorporation of [1-13C] labelled glucose into hodgsonox, a sesquiterpene epoxide with a unique, doubly allylic ether functionality has been studied in axenic cultures of the liverwort Lepidolaena hodgsoniae. Quantitative 13C NMR spectroscopic analysis showed that the isoprene units are derived exclusively from the methylerythritol phosphate pathway.  相似文献   
74.
13C NMR analysis demonstrated incorporation of two 13C labelled phenylalanine units into phenylphenalenones and phenylbenzoisochromenones co-occurring in Wachendorfia thyrsiflora. These results suggest oxidative formation of phenylbenzoisochromenones following a late branching from a common phenylphenalenone biosynthetic pathway. A dioxygenase-type mechanism, followed by decarboxylation, is suggested for the key steps of this conversion.  相似文献   
75.
Calystegines are nortropane alkaloids bearing between three and five hydroxyl groups in various positions. [15N]Tropinone was administered to root cultures of Calystegia sepium and the incorporation into calystegines was followed. Increase of label in calystegines was measured by one-dimensional 15N NMR and inverse-detected 2D NMR techniques. The results show that tropinone and pseudotropine are metabolites in the biosynthetic pathway of calystegines. The velocity of calystegine accumulation was followed kinetically by transfer of root cultures from 15N-enriched medium to 14N-medium and analysis by GC-MS. A constant calystegine formation with no interference by excretion or degradation was observed. A biosynthetic rate for individual calystegines at each time point was calculated, the maximum was 0.4 mg/day/g of biomass. This allowed the velocity of individual biosynthetic steps to be estimated.  相似文献   
76.
Upreti RK  Kumar M  Shankar V 《Proteomics》2003,3(4):363-379
Although widely distributed in eukaryotic cells glycoproteins appear to be rare in prokaryotic organisms. The prevalence of the misconception that bacteria do not glycosylate their proteins has been a subject matter of discussion for a long time. Glycoconjugates that are linked to proteins or peptides, generated by the ribosomal translational mechanism have been reported only in the last two to three decades in a few prokaryotic organisms. Most studied prokaryotic glycoproteins are the S-layer glycoproteins of Archeabacteria. Apart from these, membrane-associated, surface-associated, secreted glycoproteins and exoenzymes glycoproteins are also well documented in both, Archea and Eubacteria. From the recent literature, it is now clear that prokaryotes are capable of glycosylating proteins. In general, prokaryotes are deprived of the cellular organelles required for glycosylation. In prokaryotes many different glycoprotein structures have been observed that display much more variation than that observed in eukaryotes. Besides following similar mechanisms in the process of glycosylation, prokaryotes have also been shown to use mechanisms that are different from those found in eukaryotes. The knowledge pertaining to the functional aspects of prokaryotic glycoproteins is rather scarce. This review summarizes developments and understanding relating to characteristics, synthesis, and functions of prokaryotic glycoproteins. An extensive summary of glycosylation that has been reported to occur in bacteria has also been tabulated. Various possible applications of these diverse biomolecules in biotechnology, vaccine development, pharmaceutics and diagnostics are also touched upon.  相似文献   
77.
Nonactin is the parent compound of a group of highly atypical polyketide metabolites produced by Streptomyces griseus subsp. griseus ETH A7796. In this paper we describe the isolation, sequencing, and analysis of 15? omitted?559 bp of chromosomal DNA, containing the potential nonactin biosynthesis gene cluster, from S. griseus subsp. griseus ETH A7796. Fourteen open reading frames were observed in the DNA sequence. Significantly, type II polyketide synthase (PKS) homologues were discovered in an apparent operon structure, which also contained the nonactate synthase gene (nonS), clustered with the tetranactin resistance gene. The deduced products of two of the genes (nonK and nonJ) are quite unusual ketoacyl synthase (KAS) alpha and KASbeta homologues. We speculate that nonactic acid, the polyketide precursor of nonactin, is synthesized by a type II PKS system.  相似文献   
78.
Effects of feeding different available nitrogen sources from 80 h in erythromycin biosynthesis phase on the erythromycin A (Er-A) production were investigated in 50 l fermenter. Feeding corn steep liquor and yeast extract, the Er-A production was enhanced, while the biotransformation from erythromycin C (Er-C) to Er-A had no increase. When ammonium sulphate was fed at high feeding rate, the maximal Er-A production and ratio of Er-A to Er-C were 7953 U/ml and 98.18:1 at 184 h, respectively, which were higher than that of the control (6742 U/ml and 5.47:1). The feeding ammonium sulphate process was successfully scaled up from 50 l to 25 m3 fermenter. The maximal Er-A production reached 7938 U/ml at 203 h, which was enhanced by 22.1% compared with the control (6501 U/ml at 192 h). The ratio of Er-A to Er-C was 24.05:1, which was higher than that of the control (4.77:1).  相似文献   
79.
The known functions of type II thioesterases (TEIIs) in type I polyketide synthases (PKSs) include selecting of starter acyl units, removal of aberrant extender acyl units, releasing of final products, and dehydration of polyketide intermediates. In this study, we characterized two TEIIs (ScnI and PKSIaTEII) from Streptomyces chattanoogensis L10. Deletion of scnI in S. chattanoogensis L10 decreased the natamycin production by about 43%. Both ScnI and PKSIaTEII could remove acyl units from the acyl carrier proteins (ACPs) involved in the natamycin biosynthesis. Our results show that the TEII could play important roles in both the initiation step and the elongation steps of a polyketide biosynthesis; the intracellular TEIIs involved in different biosynthetic pathways could complement each other.  相似文献   
80.
A soluble enzyme, extracted from tobacco cell-suspension cultures 24 h after treatment with 100 μM methyl jasmonate, has been shown to synthesize acetovanillone (apocynin) from feruloyl-CoA in the presence of NAD. The enzyme displayed Michaelis-Menten kinetics with apparent Km values of 5.6 μM for feruloyl-CoA and 260 μM for NAD and exhibited very high specificity for its substrates. The increase in acetovanillone synthase activity was followed by an increase in the concentration of both acetovanillone and acetosyringone in the culture medium. No intermediate could be detected when analysing the reaction medium by HPLC during the formation of acetovanillone in cell-free extracts. The apparent molecular mass estimated by gel permeation on an FPLC column was ca. 79 kDa. To our knowledge, this is the first report of an enzymic system catalysing the synthesis of an acetophenone. This work demonstrates that the biosynthesis of acetophenones in tobacco proceeds from hydroxycinnamic acids through a CoA-dependent β-oxidation pathway. Interestingly in methyl jasmonate-treated cells, which synthesize very large amounts of hydroxycinnamoylputrescines, inhibition of the synthesis of these conjugates increased the concentration of acetovanillone and acetosyringone in the culture medium, suggesting that the two metabolic pathways can compete for their common precursors, i.e. hydroxycinnamoyl-CoA thioesters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号