首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5918篇
  免费   186篇
  国内免费   310篇
  2023年   44篇
  2022年   83篇
  2021年   102篇
  2020年   119篇
  2019年   178篇
  2018年   156篇
  2017年   107篇
  2016年   156篇
  2015年   172篇
  2014年   353篇
  2013年   484篇
  2012年   179篇
  2011年   336篇
  2010年   270篇
  2009年   326篇
  2008年   364篇
  2007年   349篇
  2006年   304篇
  2005年   286篇
  2004年   193篇
  2003年   211篇
  2002年   204篇
  2001年   101篇
  2000年   96篇
  1999年   99篇
  1998年   89篇
  1997年   75篇
  1996年   64篇
  1995年   72篇
  1994年   82篇
  1993年   73篇
  1992年   62篇
  1991年   48篇
  1990年   44篇
  1989年   47篇
  1988年   39篇
  1987年   35篇
  1986年   26篇
  1985年   56篇
  1984年   102篇
  1983年   72篇
  1982年   38篇
  1981年   39篇
  1980年   28篇
  1979年   10篇
  1978年   14篇
  1977年   7篇
  1976年   9篇
  1975年   5篇
  1973年   3篇
排序方式: 共有6414条查询结果,搜索用时 15 毫秒
221.
Respiratory complex II (succinate:ubiquinone oxidoreductase) connects the tricarboxylic acid cycle to the electron transport chain in mitochondria and many prokaryotes. Complex II mutations have been linked to neurodegenerative diseases and metabolic defects in cancer. However, there is no convenient stoichiometric assay for the catalytic activity of complex II. Here, we present a simple, quantitative, real-time method to detect the production of fumarate from succinate by complex II that is easy to implement and applicable to the isolated enzyme, membrane preparations, and tissue homogenates. Our assay uses fumarate hydratase to convert fumarate to malate and uses oxaloacetate decarboxylating malic dehydrogenase to convert malate to pyruvate and to convert NADP+ to NADPH; the NADPH is detected spectrometrically. Simple protocols for the high-yield production of the two enzymes required are described; oxaloacetate decarboxylating malic dehydrogenase is also suitable for accurate determination of the activity of fumarate hydratase. Unlike existing spectrometric assay methods for complex II that rely on artificial electron acceptors (e.g., 2,6-dichlorophenolindophenol), our coupled assay is specific and stoichiometric (1:1 for succinate oxidation to NADPH formation), so it is suitable for comprehensive analyses of the catalysis and inhibition of succinate dehydrogenase activities in samples with both simple and complex compositions.  相似文献   
222.
Further development of our recently published Glu(pNA)-containing peptides (Anal. Biochem. 428 (2012) 73–80) provided new fluorogenic substrates for the activated blood coagulation factor XIII. A first series was designed by incorporation of Glu(AMC) at the penultimate position from the N terminus. For the best derivative H-Tyr-Glu(AMC)-Val-Lys-Val-Ile-NH2, a moderate kcat/Km value of 34 s−1 M−1 was determined, which is more than 100-fold reduced compared with the previously reported Glu(pNA) substrates. Furthermore, two fluorescence resonance energy transfer (FRET) substrates were prepared by incorporation of an N-methyl-anthraniloyl fluorophore and a 2,4-dinitrophenyl quencher. Both substrates were excellently cleaved by FXIII-A2, which is generated from its zymogen by activation of thrombin in the presence of calcium ions. In the absence and presence of H-Gly-ethyl ester, kcat/Km values of 8010 and 8660 s1 M1, respectively, were found for the conversion of H-Lys(N(Me)Abz)-Glu(NH-(CH2)4-NH-Dnp)-Val-Lys-Val-Ile-Gly-NH2 (substrate 8). These values are more than 200-fold improved compared with the Glu(AMC) substrates. Substrate 8 is suitable for the measurement of FXIII-A2 activities in plasma samples as well as for in vitro measurements. Furthermore, it was used for the determination of the inhibitory potency of a newly synthesized chloromethyl ketone derivative, Cbz-Phe-Glu(CMK)-Val-Lys-Val-Ile-Gly-NH2, which was found to be a potent irreversible inhibitor of FXIII-A2.  相似文献   
223.
Dihydroorotase (DHOase) is the third enzyme in the de novo pyrimidine biosynthesis pathway and is a potential new antibacterial drug target. No target-based high-throughput screening (HTS) assay for this enzyme has been reported to date. Here, we optimized two colorimetric-based enzymatic assays that detect the ureido moiety of the DHOase substrate, carbamyl-aspartate (Ca-asp). Each assay was developed in a 40-μl assay volume using 384-well plates with a different color mix, diacetylmonoxime (DAMO)–thiosemicarbazide (TSC) or DAMO–antipyrine. The sensitivity and color interference of both color mixes were compared in the presence of common HTS buffer additives, including dimethyl sulfoxide, reducing agents, detergents, and bovine serum albumin. DAMO–TSC (Z′-factors 0.7–0.8) was determined to be superior to DAMO–antipyrine (Z′-factors 0.5–0.6) with significantly less variability within replicates. An HTS pilot screening with 29,552 compounds from four structurally diverse libraries confirmed the quality of our newly optimized colorimetric assay with DAMO–TSC. This robust method has no heating requirement, which was the main obstacle to applying previous assays to HTS. More important, this well-optimized HTS assay for DHOase, the first of its kind, should make it possible to screen large-scale compound libraries to develop new inhibitors against any enzymes that produce ureido functional groups.  相似文献   
224.
Leukotriene A4 hydrolase (LTA4H) is a bifunctional zinc-dependent metalloprotease bearing both an epoxide hydrolase, producing the pro-inflammatory LTB4 leukotriene, and an aminopeptidase activity, whose physiological relevance has long been ignored. Distinct substrates are commonly used for each activity, although none is completely satisfactory; LTA4, substrate for the hydrolase activity, is unstable and inactivates the enzyme, whereas aminoacids β-naphthylamide and para-nitroanilide, used as aminopeptidase substrates, are poor and nonselective. Based on the three-dimensional structure of LTA4H, we describe a new, specific, and high-affinity fluorigenic substrate, PL553 [l-(4-benzoyl)phenylalanyl-β-naphthylamide], with both in vitro and in vivo applications. PL553 possesses a catalytic efficiency (kcat/Km) of 3.8 ± 0.5 × 104 M−1 s−1 using human recombinant LTA4H and a limit of detection and quantification of less than 1 to 2 ng. The PL553 assay was validated by measuring the inhibitory potency of known LTA4H inhibitors and used to characterize new specific amino-phosphinic inhibitors. The LTA4H inhibition measured with PL553 in mouse tissues, after intravenous administration of inhibitors, was also correlated with a reduction in LTB4 levels. This authenticates the assay as the first allowing the easy measurement of endogenous LTA4H activity and in vitro specific screening of new LTA4H inhibitors.  相似文献   
225.
226.
The CRISPR/Cas technology has been successfully used to stimulate the integration of small DNA sequences in a target locus to produce gene mutations. However, many applications require homologous recombination using large gene-targeting constructs. Here we address the potential of CRISPR/Cas-mediated double-strand breaks to enhance the genetic engineering of large target sequences using a construct for “humanizing” the mouse Cnr2 gene locus. We designed a small-guide RNA that directs the induction of double strand breaks by Cas9 in the Cnr2 coding exon. By co-transfection of the CRISPR/Cas system with the 10 kb targeting construct we were able to boost the recombination frequency more than 200-fold from 0.27% to 67%. This simple technology can thus be used for the homologous integration of large gene fragments and should greatly enhance our ability to generate any kind of genetically altered mouse models.  相似文献   
227.
A series of some novel 1,3,5-triazine–Schiff base conjugates (132) have been synthesized and evaluated for their in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv using Alamar Blue assay and the activity expressed as the minimum inhibitory concentration (MIC) in μg/mL. Compounds 4 (4-Methoxy-6-methyl-N-(3,4,5-trimethoxybenzylidene)-1,3,5-triazin-2-amine), 11 (4-Methoxy-6-methyl-N-(2-hydroxy-3-bromo-5-chloro-benzylidene)-1,3,5-triazin-2-amine) and 24 (4-Methoxy-6-methyl-N-(1-(2,5-dihydroxyphenyl)ethylidene)-1,3,5-triazin-2-amine) exhibited a significant activity at 3.125, 6.25 and 6.25 μg/mL, respectively, when compared with the antitubercular drugs such as ethambutol (3.125 μg/mL), pyrazinamide (6.25 μg/mL) and streptomycin (6.25 μg/mL) and it could be a potential starting point to develop new lead compounds in the fight against Mycobacterium tuberculosis H37Rv.  相似文献   
228.
Certain bacterial pathogens possess a repertoire of carbohydrate processing enzymes that process host N-linked glycans and many of these enzymes are required for full virulence of harmful human pathogens such as Clostridium perfringens and Streptococcus pneumoniae. One bacterial carbohydrate processing enzyme that has been studied is the pneumococcal virulence factor SpGH125 from S. pneumoniae and its homologue, CpGH125, from C. perfringens. These exo-α-1,6-mannosidases from glycoside hydrolase family 125 show poor activity toward aryl α-mannopyranosides. To circumvent this problem, we describe a convenient synthesis of the fluorogenic disaccharide substrate 4-methylumbelliferone α-d-mannopyranosyl-(1→6)-β-d-mannopyranoside. We show this substrate can be used in a coupled fluorescent assay by using β-mannosidases from either Cellulomonas fimi or Helix pomatia as the coupling enzyme. We find that this disaccharide substrate is processed much more efficiently than aryl α-mannopyranosides by CpGH125, most likely because inclusion of the second mannose residue makes this substrate more like the natural host glycan substrates of this enzyme, which enables it to bind better. Using this sensitive coupled assay, the detailed characterization of these metal-independent exo-α-mannosidases GH125 enzymes should be possible, as should screening chemical libraries for inhibitors of these virulence factors.  相似文献   
229.
Novel 2-thioxothiazole derivatives (619) as potential adenosine A2A receptor (A2AR) antagonists were synthesized. The strong interaction of the compounds (619) with A2AR in docking study was confirmed by high binding affinity with human A2AR expressed in HEK293T cells using radioligand-binding assay. The compound 19 demonstrated very high selectivity for A2AR as compared to standard A2AR antagonist SCH58261. Decrease in A2AR-coupled release of endogenous cAMP in treated HEK293T cells demonstrated in vitro A2AR antagonist potential of the compound 19. Attenuation in haloperidol-induced impairment (catalepsy) in Swiss albino male mice pre-treated with compound 19 is evocative to explore its prospective in therapy of PD.  相似文献   
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号