首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12744篇
  免费   1648篇
  国内免费   2344篇
  2024年   79篇
  2023年   346篇
  2022年   310篇
  2021年   292篇
  2020年   563篇
  2019年   638篇
  2018年   699篇
  2017年   622篇
  2016年   652篇
  2015年   653篇
  2014年   805篇
  2013年   926篇
  2012年   605篇
  2011年   822篇
  2010年   562篇
  2009年   753篇
  2008年   782篇
  2007年   741篇
  2006年   705篇
  2005年   563篇
  2004年   491篇
  2003年   510篇
  2002年   450篇
  2001年   340篇
  2000年   304篇
  1999年   295篇
  1998年   249篇
  1997年   202篇
  1996年   216篇
  1995年   176篇
  1994年   166篇
  1993年   142篇
  1992年   140篇
  1991年   89篇
  1990年   104篇
  1989年   84篇
  1988年   76篇
  1987年   57篇
  1986年   52篇
  1985年   67篇
  1984年   54篇
  1983年   32篇
  1982年   65篇
  1981年   45篇
  1980年   46篇
  1979年   39篇
  1978年   33篇
  1977年   16篇
  1976年   31篇
  1973年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
The long-term response of citrus rootstock seedlings to CO2 enrichment was examined in Carrizo estrange ( Poncirua trifoliata (L.) Raf. x Citrus sinensis (L.) Osbeck] and Swingle citrumelo ( P. trifoliate x C. parodist Macf.]. Plaotlets 14 weeks old were transferred to outdoor controlled-environment chambers and maintained for 5 months from Feb. 14 to July 21. During this period, new growth (cm) of citrange and citrumelo shoots at 660 μl1−1 was 94 and 69% greater, respectively, than at 330 μ1 1−1. Total dry weight of both rootstock shoots had increased by over 100%. Growth of few species is affected this markedly by elevated CO2 levels.
More carbon was partitioned to above-ground organs in CO2-enriched citrus seedlings. Stem dry matter per unit length was also 32 and 44% greater in citrange and citrumelo, respectively. Total leaf area was increased by 124% in citrange and 85% in citrumelo due to greater leaf number and size. Variations in overall relative growth rate appeared to be related to the rapid, sequential, flush-type growth in citrus, in which an entire shoot segment with its associated leaves remains an active sink until fully expanded. RuBP carboxylase (EC 4.1.1.39) activity in leaves of recently-expanded flushes was higher in citrumelo plants grown at 660 vs 330 μ1 1−1 CO2 and changed diurnally for citrange (but not citrumelo) leaves at both CO2 levels. The results are consistent with the hypothesis that positive long-term effects of CO2 enrichment may be greater in species or during growth periods where sink capacity for carbon utilization is high.  相似文献   
92.
93.
Summary Estimates of belowground net primary production (BNP) obtained by using traditional soil core harvest data are subject to a variety of potentially serious errors. In a controlled growth chamber experiment, we examined the aboveground-belowground, labile to structural tissue, and plant to soil dynamics of carbon to formulate a14C dilution technique for potential successful application in the field and to quantify sources of error in production estimates.Despite the fact that the majority of net14C movement between above- and belowground plant parts occurred between the initial labeling and day 5, significant quantities of14C were incorporated into cell-wall tissue throughout the growing period. The rate of this increase at late sampling dates was greater for roots than for shoots. Total loss of assimilated14C was 47% in wheat and 28% in blue grama. Exudation and sloughing in wheat and blue grama, respectively, was 15 and 6% of total uptake and 22 and 8% of total plant production.When root production estimates by14C dilution were corrected for the quantities of labile14C incorporated into structural carbon between two sampling dates, good agreement with actual production was found. The error associated with these estimates was ±2% compared with a range of –119 to –57% for the uncorrected estimates. Our results suggest that this technique has potential field application if sampling is performed the year after labelling.Sources of errors in harvest versus14C dilution estimates of BNP are discussed.  相似文献   
94.
Electron transport system (ETS) activity, CO2 evolution, O2 consumption, N2-fixation (C2H2 reduction) and methanogenesis were appropriately measured in aerobic and anaerobically incubated sediment at 4, 10 and 20 ° C to better characterize these activities under different incubation conditions. ETS activity was always higher in the aerobically incubated sediment at all three incubation temperatures, whereas (C2H2 reduction was always greater in the anaerobic sediment. Carbon dioxide evolution was detected only in the aerobic sediment at 10 and 20 ° C but not at 4 ° C. Methane evolution in anaerobic sediment increased gradually with an increase in the incubation temperature.  相似文献   
95.
In green leaves and a number of algae, photosynthetically derived carbon is ultimately converted into two carbohydrate end-products, sucrose and starch. Drainage of carbon from the Calvin cycle proceeds via triose phosphate, fructose 6-phosphate and glycollate. Gluconeogenesis in photosynthetic cells is controlled by light, inorganic phosphate and phosphorylated sugars. Light stimulates the production of dihydroxyacetone phosphate, the initial substrate for sucrose and starch synthesis, and inhibits the degradative pathways in the chloroplast. Phosphate inactivates reactions of synthesis and activates reactions of degradation. Among the phosphorylated sugars a special role is allocated to fructose 2,6-bisphosphate, which is present in the cytoplasm at very low concentrations and inhibits sucrose synthesis directly by inactivating pyrophosphatedependent phosphofructokinase. The synthesis of sucrose plays a central role in the partitioning of photosynthetic carbon. The cytoplasmic enzymes, fructose bisphosphate phosphatase and sucrose phosphate synthase are likely key points of regulation. The regulation is carried out by several effector metabolites. Fructose 2,6-bisphosphate is likely to be the main coordinator of the rate of sucrose synthesis, hence of photosynthetic carbon partitioning between sucrose and starch.Paper presented at the FESP meeting (Strasbourg, 1984)  相似文献   
96.
Leaf photosynthesis rate of the C4 species Paspalum plicatulum Michx was virtually CO2-saturated at normal atmospheric CO2 concentration but transpiration decreased as CO2 was increased above normal concentrations thereby increasing transpiration efficiency. To test whether this leaf response led growth to be CO2-sensitive when water supply was restricted, plants were grown in sealed pots of soil as miniature swards. Water was supplied either daily to maintain a constant water table, or at three growth restricting levels on a 5-day drying cycle. Plants were either in a cabinet with normal air (340 mol (CO2) mol-1 (air)) or with 250 mol mol-1 enrichment. Harvesting was by several cycles of defoliation.With abundant water supply high CO2 concentration did not cause increased growth, but it did not cause an increase in growth over a wide range of growth-limiting water supplies either. Only when water supply was less than 30–50% of the amount used by the stand with a water-table was there evidence that dry weight growth was enhanced by high CO2. In addition, with successive regrowth, the enhancing effect under a regime of minimal water allocations, became attenuated. Examination of leaf gas exchange, growth and water use data showed that in the long term stomatal conductance responses were of little significance in matching plant water use to low water allocation; regulation of leaf area was the mechanism through which consumption matched supply. Since high CO2 effects operate principally via stomatal conductance in C4 species, we postulate that for this species higher CO2 concentrations expected globally in future will not have much effect on long term growth.  相似文献   
97.
Abstract The quantitative approach used here is based on a model comprising a well-stirred medium, an unstirred layer, and a CO2 absorbing leaf. The unstirred layer is divided up by planes into a number of sub-layers. Within each plane the concentration of each solute is everywhere the same as is the electric potential. These variables constitute the basic data. Thus the planes were characterized by their pH value. An equation is derived which enables the calculation of the basic data of a plane from the known data of another plane. In this way it is possible to calculate the basic data for all planes. From these data the rate of assimilation, the thickness of the unstirred layer and its sub-layers, the fluxes across the sub-layers and the conversions among the carbon components can be estimated. The CO2 flux decreases, and the HCO?3 flux increases towards the leaf. There are negative fluxes of OH& and CO2–3. H+ fluxes are of minor importance and can be ignored if the pH of the medium is higher than 8.0, provided no non-inorganic C buffers with appropriate pKa are present. The significance of the carbon diffusion facilitating effect of an inorganic carbon system is expressed in various ways. The values obtained represent maxima, as the assumption is made that the equilibrium reactions are very fast. It is argued that even better effects are possible if the back-diffusion of CO2–3 could be prevented by lowering the pH of the unstirred layer.  相似文献   
98.
K Matsuno 《Bio Systems》1985,17(3):179-192
Material self-assembly as a self-organizing process is always accompanied by symmetry-breaking in the material configuration. Self-sequencing of amino acids during their thermal polymerization has lost a certain property of permutation symmetry that was observed in the mixture of free amino acids. The evolutionary precursor state is more symmetrical about its internal material configuration and more degenerate due to the multitude of the indistinguishable individuals. The evolution proceeds in the direction along which the degeneracy in the internal states dissolves owing to the symmetry-breaking originating in material flow equilibrium of open material aggregates. Protobiological information is latent in the material system which is highly symmetrical and highly degenerate in its internal states. Evolution of matter is an endogenous process in which the earlier symmetric property is lost and less degenerate states are approached. Quantum-mechanically, the generation of protobiological information is due to the symmetry-breaking of the Hamiltonian originating in the interaction with the exterior through material flow, in contrast to the Schrödinger equation which preserves a symmetry and the associated invariants.  相似文献   
99.
A technique involving culture in soft agar was used for the assay of forward mutation of V79 cells to 6-thioguanine (6TG) resistance. The main reason for the use of soft agar was to prevent reduction in recovery of mutants depending on the cell density plated for mutation selection, which is the chief problem in the liquid method, and which results mainly from metabolic co-operation due to cell-to-cell contact.V79 cells grew well in fortified soft agar medium (DMEM + 20% FBS) showing cloning efficiencies (>80%) as high as in liquid culture. Therefore, V79/HGPRT mutagenesis could be assayed quantitatively in soft agar culture.The frequency of 6TG-resistant colonies in agar selective medium increased linearly with increase in concentration of EMS. Toxicity and mutagenic responses were greater in soft agar than in liquid culture.In cultures of untreated and EMS-treated cells, more than 95% of the 6TG-resistant colonies isolated were aminopterin-sensitive.Use of soft agar for selection prevented the reduction in the number of mutants with increase in the size of incula on plating up to 1?2 × 106 cells per 9-cm dish: in liquid culture, even with a lower plating number (2 × 105 cells per 9-cm dish), a notable reduction in numbers of mutants was observed. This character was re-examined in a reconstruction experiment. The results show that, when up to 2 × 106 cells were plated per 9-cm dish, 6TG-resistant cells were almost completely recovered from the soft agar medium, whereas only 10% were recovered from liquid culture.  相似文献   
100.
Abstract: d -Neopterin at 10 μ M delayed start of the decline of serotonin N -acetyltransferase (NAT) activity from the peak level in the cycle exhibited by chick pineal glands cultured under standard conditions in the dark. A less marked retardation of decline of NAT activity was found with glands cultured under diurnal illumination or those exposed prematurely to light. There were no significant effects of neopterin on the increases of NAT activity or peak levels of activity developed. The pteridine also retarded loss of NAT activity from the peak level developed in the dark when the time of explanting into culture was later in the (solar) day, but not when it was earlier. Neopterin had no effect on the cycle in cyclic GMP content of cultured chick pineal glands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号