首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1392篇
  免费   187篇
  国内免费   84篇
  2024年   5篇
  2023年   22篇
  2022年   45篇
  2021年   56篇
  2020年   66篇
  2019年   76篇
  2018年   56篇
  2017年   47篇
  2016年   47篇
  2015年   76篇
  2014年   140篇
  2013年   108篇
  2012年   122篇
  2011年   121篇
  2010年   79篇
  2009年   82篇
  2008年   78篇
  2007年   75篇
  2006年   71篇
  2005年   64篇
  2004年   60篇
  2003年   50篇
  2002年   31篇
  2001年   23篇
  2000年   15篇
  1999年   7篇
  1998年   9篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   4篇
排序方式: 共有1663条查询结果,搜索用时 15 毫秒
31.
Neurofibrillary tangles, one of the hallmarks of Alzheimer disease (AD), are composed of paired helical filaments of abnormally hyperphosphorylated tau. The accumulation of these proteinaceous aggregates in AD correlates with synaptic loss and severity of dementia. Identifying the kinases involved in the pathological phosphorylation of tau may identify novel targets for AD. We used an unbiased approach to study the effect of 352 human kinases on their ability to phosphorylate tau at epitopes associated with AD. The kinases were overexpressed together with the longest form of human tau in human neuroblastoma cells. Levels of total and phosphorylated tau (epitopes Ser(P)-202, Thr(P)-231, Ser(P)-235, and Ser(P)-396/404) were measured in cell lysates using AlphaScreen assays. GSK3α, GSK3β, and MAPK13 were found to be the most active tau kinases, phosphorylating tau at all four epitopes. We further dissected the effects of GSK3α and GSK3β using pharmacological and genetic tools in hTau primary cortical neurons. Pathway analysis of the kinases identified in the screen suggested mechanisms for regulation of total tau levels and tau phosphorylation; for example, kinases that affect total tau levels do so by inhibition or activation of translation. A network fishing approach with the kinase hits identified other key molecules putatively involved in tau phosphorylation pathways, including the G-protein signaling through the Ras family of GTPases (MAPK family) pathway. The findings identify novel tau kinases and novel pathways that may be relevant for AD and other tauopathies.  相似文献   
32.

Background

Combinatorial complexity is a central problem when modeling biochemical reaction networks, since the association of a few components can give rise to a large variation of protein complexes. Available classical modeling approaches are often insufficient for the analysis of very large and complex networks in detail. Recently, we developed a new rule-based modeling approach that facilitates the analysis of spatial and combinatorially complex problems. Here, we explore for the first time how this approach can be applied to a specific biological system, the human kinetochore, which is a multi-protein complex involving over 100 proteins.

Results

Applying our freely available SRSim software to a large data set on kinetochore proteins in human cells, we construct a spatial rule-based simulation model of the human inner kinetochore. The model generates an estimation of the probability distribution of the inner kinetochore 3D architecture and we show how to analyze this distribution using information theory. In our model, the formation of a bridge between CenpA and an H3 containing nucleosome only occurs efficiently for higher protein concentration realized during S-phase but may be not in G1. Above a certain nucleosome distance the protein bridge barely formed pointing towards the importance of chromatin structure for kinetochore complex formation. We define a metric for the distance between structures that allow us to identify structural clusters. Using this modeling technique, we explore different hypothetical chromatin layouts.

Conclusions

Applying a rule-based network analysis to the spatial kinetochore complex geometry allowed us to integrate experimental data on kinetochore proteins, suggesting a 3D model of the human inner kinetochore architecture that is governed by a combinatorial algebraic reaction network. This reaction network can serve as bridge between multiple scales of modeling. Our approach can be applied to other systems beyond kinetochores.  相似文献   
33.
Whole genome sequencing has allowed rapid progress in the application of forward genetics in model species. In this study, we demonstrated an application of next-generation sequencing for forward genetics in a complex crop genome. We sequenced an ethyl methanesulfonate-induced mutant of Sorghum bicolor defective in hydrogen cyanide release and identified the causal mutation. A workflow identified the causal polymorphism relative to the reference BTx623 genome by integrating data from single nucleotide polymorphism identification, prior information about candidate gene(s) implicated in cyanogenesis, mutation spectra, and polymorphisms likely to affect phenotypic changes. A point mutation resulting in a premature stop codon in the coding sequence of dhurrinase2, which encodes a protein involved in the dhurrin catabolic pathway, was responsible for the acyanogenic phenotype. Cyanogenic glucosides are not cyanogenic compounds but their cyanohydrins derivatives do release cyanide. The mutant accumulated the glucoside, dhurrin, but failed to efficiently release cyanide upon tissue disruption. Thus, we tested the effects of cyanide release on insect herbivory in a genetic background in which accumulation of cyanogenic glucoside is unchanged. Insect preference choice experiments and herbivory measurements demonstrate a deterrent effect of cyanide release capacity, even in the presence of wild-type levels of cyanogenic glucoside accumulation. Our gene cloning method substantiates the value of (1) a sequenced genome, (2) a strongly penetrant and easily measurable phenotype, and (3) a workflow to pinpoint a causal mutation in crop genomes and accelerate in the discovery of gene function in the postgenomic era.  相似文献   
34.
番茄AT-hook基因家族的鉴定及胁迫条件下的表达分析   总被引:2,自引:0,他引:2  
AT-hook蛋白家族在植物生长发育、器官构建及逆境胁迫和激素信号应答中发挥重要作用。本研究在番茄基因组范围内,利用生物信息学方法对番茄AT-hook基因家族的成员、分布、结构和功能进行分析。结果表明,番茄AT-hook家族包含32个成员,分为3种类型,其中类型Ⅰ含有13个成员;遗传进化分析表明番茄AT-hook基因成员与拟南芥家族基因具有相似分类。利用实时荧光定量PCR对番茄32个基因开展组织表达分析,结果表明AT-hook基因具有表达差异,主要在根和花中表达较高。氧化胁迫分析结果表明,32个基因受ABA、SA、盐、高温和低温诱导表达,其中部分基因显著上调或下调表达,很可能参与了番茄逆境胁迫条件下的防御应答反应。本研究结果将为番茄AT-hook家族基因的深入研究提供依据,为进一步解析番茄AT-hook基因的功能奠定基础。  相似文献   
35.
36.
Laser‐capture microdissection (LCM) offers a reliable cell population enrichment tool and has been successfully coupled to MS analysis. Despite this, most proteomic studies employ whole tissue lysate (WTL) analysis in the discovery of disease biomarkers and in profiling analyses. Furthermore, the influence of tissue heterogeneity in WTL analysis, nor its impact in biomarker discovery studies have been completely elucidated. In order to address this, we compared previously obtained high resolution MS data from a cohort of 38 breast cancer tissues, of which both LCM enriched tumor epithelial cells and WTL samples were analyzed. Label‐free quantification (LFQ) analysis through MaxQuant software showed a significantly higher number of identified and quantified proteins in LCM enriched samples (3404) compared to WTLs (2837). Furthermore, WTL samples displayed a higher amount of missing data compared to LCM both at peptide and protein levels (p‐value < 0.001). 2D analysis on co‐expressed proteins revealed discrepant expression of immune system and lipid metabolisms related proteins between LCM and WTL samples. We hereby show that LCM better dissected the biology of breast tumor epithelial cells, possibly due to lower interference from surrounding tissues and highly abundant proteins. All data have been deposited in the ProteomeXchange with the dataset identifier PXD002381 ( http://proteomecentral.proteomexchange.org/dataset/PXD002381 ).  相似文献   
37.
38.
DNA methylation plays major roles in many biological processes, including aging, carcinogenesis, and development. Analyses of DNA methylation using next‐generation sequencing offer a new way to profile and compare methylomes across the genome in the context of aging. We explored genomewide DNA methylation and the effects of short‐term calorie restriction (CR) on the methylome of aged rat kidney. Whole‐genome methylation of kidney in young (6 months old), old (25 months old), and OCR (old with 4‐week, short‐term CR) rats was analyzed by methylated DNA immunoprecipitation and next‐generation sequencing (MeDIP‐Seq). CpG islands and repetitive regions were hypomethylated, but 5′‐UTR, exon, and 3′‐UTR hypermethylated in old and OCR rats. The methylation in the promoter and intron regions was decreased in old rats, but increased in OCR rats. Pathway enrichment analysis showed that the hypermethylated promoters in old rats were associated with degenerative phenotypes such as cancer and diabetes. The hypomethylated promoters in old rats related significantly to the chemokine signaling pathway. However, the pathways significantly enriched in old rats were not observed from the differentially methylated promoters in OCR rats. Thus, these findings suggest that short‐term CR could partially ameliorate age‐related methylation changes in promoters in old rats. From the epigenomic data, we propose that the hypermethylation found in the promoter regions of disease‐related genes during aging may indicate increases in susceptibility to age‐related diseases. Therefore, the CR‐induced epigenetic changes that ameliorate age‐dependent aberrant methylation may be important to CR's health‐ and life‐prolonging effects.  相似文献   
39.
Liu  Wanmeng  Kuang  Ming  Zhang  Ze  Lu  Yuanan  Liu  Xueqin 《中国病毒学》2019,34(4):434-443
Tripartite motif(TRIM) proteins were shown to play an important role in innate antiviral immunity. FinTRIM(ftr) is a new subset of TRIM genes that do not possess obvious orthologs in higher vertebrates. However, little is known about its function. In this study, we used bioinformatic analysis to examine the phylogenetic relationships and conserved domains of zebrafish(Danio rerio) ftr01, ftr42, and ftr58, as well as qualitative real-time PCR to examine their expression patterns in zebrafish embryonic fibroblast(ZF4) cells and zebrafish tissues. Sequence analysis showed that the three finTRIMs are highly conserved, and all contain a RING domain, B-box domain, and SPRY-PRY domain. In addition, ftr42 and ftr58 had one coiled-coil domain(CCD), whereas ftr01 had two CCDs. Tissue expression analysis revealed that the m RNA level of ftr01 was the highest in the liver, whereas those of ftr42 and ftr58 were the highest in the gill; the expression of thesefinTRIMs was clearly upregulated not in the eyes, but in the liver, spleen, kidney, gill, and brain of zebrafish following spring viremia of carp virus(SVCV) infection. Similarly, the expression of these three finTRIM genes also increased in ZF4 cells after SVCV infection. Our study revealed that ftr01, ftr42, and ftr58 may play an important role in antiviral immune responses, and these findings validate the need for more in-depth research on the finTRIM family in the future.  相似文献   
40.
  1. Download : Download high-res image (53KB)
  2. Download : Download full-size image
Highlights
  • •Automated analysis of protein complexes in proteomic experiments.
  • •Quantitative measurement of the coordinated changes in protein complex components.
  • •Interactive visualizations for exploratory analysis of proteomic results.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号