首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   969篇
  免费   149篇
  国内免费   51篇
  2024年   5篇
  2023年   15篇
  2022年   27篇
  2021年   42篇
  2020年   40篇
  2019年   58篇
  2018年   39篇
  2017年   29篇
  2016年   32篇
  2015年   57篇
  2014年   111篇
  2013年   71篇
  2012年   101篇
  2011年   101篇
  2010年   64篇
  2009年   69篇
  2008年   62篇
  2007年   54篇
  2006年   38篇
  2005年   44篇
  2004年   42篇
  2003年   33篇
  2002年   15篇
  2001年   8篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1983年   4篇
排序方式: 共有1169条查询结果,搜索用时 46 毫秒
91.
Biomphalaria glabrata is an important host in the transmission of human schistosomiasis in the Caribbean and South America. Therefore, it is of interest to analyse the proteome data of Biomphalaria glabrata hemolymph to identify immunity related proteins in host-pathogen relationship. We used shotgun proteomic and bioinformatic analyses of the non-depleted and depleted [0.5 and 0.75% Trifluoroacetic acid (TFA) depletion] hemolymph of B. glabrata (LE strain). Analysis showed 148 proteins from the hemolymph. 148 were obtained from the 0.5% TFA-depleted sample. 62 proteins follow this from the 0.75% TFA-depleted sample. However, only 59 were found from non-depleted hemolymph. A number of proteins were identified from the hemolymph of this schistosomiasis snail vector linked to immunity related functions. This provides insights to the understanding of schistosome-snail interaction.  相似文献   
92.
Chan P  Lovrić J  Warwicker J 《Proteomics》2006,6(12):3494-3501
A characteristic of two-dimensional proteomics gels is a general bimodal distribution of isoelectric (pI) values. Discussion of this feature has focussed on the balance of acidic and basic ionisable residues, and potential relationships between pI distributions and organism classification or protein subcellular location. Electrostatics calculations on a set of protein structures with known subcellular location show that predicted folded state pI are similar to those calculated from sequence alone, but adjusted according to a general stabilising effect from interactions between ionisable groups. Bimodal distributions dominate both pI and the predicted pH of maximal stability. However, there are significant differences between these features. The average pH of maximal stability generally follows organelle pH. Average pI values are well removed from organelle pH in most subcellular environments, consistent with the view that proteins have evolved to carry (on average) net charge in a given subcellular location, and relevant to discussion of solubility in crowded environments. Correlation of the predicted pH of maximum stability with subcellular pH suggests an evolutionary pressure to adjust folded state interactions according to environment. Finally, our analysis of ionisable group contributions to stability suggests that Golgi proteins have the largest such term, although this dataset is small.  相似文献   
93.
94.
Microsatellites are ubiquitous short tandem repeats found in all known genomes and are known to play a very important role in various studies and fields including DNA fingerprinting, paternity studies, evolutionary studies, virulence and adaptation of certain bacteria and viruses etc. Due to the sequencing of several genomes and the availability of enormous amounts of sequence data during the past few years, computational studies of microsatellites are of interest for many researchers. In this context, we developed a software tool called Imperfect Microsatellite Extractor (IMEx), to extract perfect, imperfect and compound microsatellites from genome sequences along with their complete statistics. Recently we developed a user-friendly graphical-interface using JAVA for IMEx to be used as a stand-alone software named G-IMEx. G-IMEx takes a nucleotide sequence as an input and the results are produced in both html and text formats. The Linux version of G-IMEx can be downloaded for free from http://www.cdfd.org.in/imex.  相似文献   
95.
96.
l-myo-inositol 1-phosphate synthase (EC 5.5.1.4; MIPS) catalyzes the first rate limiting conversion of d-glucose 6-phosphate to l-myo-inositol 1-phosphate in the inositol biosynthetic pathway. In an earlier communication we have reported two forms of MIPS in Synechocystis sp. PCC6803 (Chatterjee et al. in Planta 218:989–998, 2004). One of the forms with a ~50 kDa subunit has been found to be coded by an as yet unassigned ORF, sll1722. In the present study we have purified the second isoform of MIPS as a ~65 kDa protein from the crude extract of Synechocystis sp. PCC6803 to apparent homogeneity and biochemically characterized. MALDI-TOF analysis of the 65 kDa protein led to its identification as acetolactate synthase large subunit (EC 2.2.1.6; ALS), the putatively assigned ORF sll1981 of Synechocystis sp. PCC6803. The PCR amplified ~1.6 kb product of sll1981 was found to functionally complement the yeast inositol auxotroph, FY250 and could be expressed as an immunoreactive ~65 kDa MIPS protein in the natural inositol auxotroph, Schizosaccharomyces pombe. In vitro MIPS activity and cross reactivity against MIPS antibody of purified recombinant sll1981 further consolidated its identity as the second probable MIPS gene in Synechocystis sp. PCC6803. Sequence comparison along with available crystal structure analysis of the yeast MIPS reveals conservation of several amino acids in sll1981 essential for substrate and co-factor binding. Comparison with other prokaryotic and eukaryotic MIPS sequences and phylogenetic analysis, however, revealed that like sll1722, sll1981 is quite divergent from others. It is probable that sll1981 may code for a bifunctional enzyme protein having conserved domains for both MIPS and acetolactate synthase (ALS) activities.Anirban Chatterjee and Krishnarup Ghosh Dastidar contributed equally.  相似文献   
97.
Prediction of protease types in a hybridization space   总被引:2,自引:0,他引:2  
Regulating most physiological processes by controlling the activation, synthesis, and turnover of proteins, proteases play pivotal regulatory roles in conception, birth, digestion, growth, maturation, ageing, and death of all organisms. Different types of proteases have different functions and biological processes. Therefore, it is important for both basic research and drug discovery to consider the following two problems. (1) Given the sequence of a protein, can we identify whether it is a protease or non-protease? (2) If it is, what protease type does it belong to? Although the two problems can be solved by various experimental means, it is both time-consuming and costly to do so. The avalanche of protein sequences generated in the post-genetic era has challenged us to develop an automated method for making a fast and reliable identification. By hybridizing the functional domain composition and pseudo-amino acid composition, we have introduced a new method called "FunD-PseAA predictor" that is operated in a hybridization space. To avoid redundancy and bias, demonstrations were performed on a dataset where none of the proteins has >or=25% sequence identity to any other. The overall success rate thus obtained by the jackknife cross-validation test in identifying protease and non-protease was 92.95%, and that in identifying the protease type was 94.75% among the following six types: (1) aspartic, (2) cysteine, (3) glutamic, (4) metallo, (5) serine, and (6) threonine. Demonstration was also made on an independent dataset, and the corresponding overall success rates were 98.36% and 97.11%, respectively, suggesting the FunD-PseAA predictor is very powerful and may become a useful tool in bioinformatics and proteomics.  相似文献   
98.
The Semantic Web for the Life Sciences (SWLS), when realized, will dramatically improve our ability to conduct bioinformatics analyses using the vast and growing stores of web-accessible resources. This ability will be achieved through the widespread acceptance and application of standards for naming, representing, describing and accessing biological information. The W3C-led Semantic Web initiative has established most, if not all, of the standards and technologies needed to achieve a unified, global SWLS. Unfortunately, the bioinformatics community has, thus far, appeared reluctant to fully adopt them. Rather, we are seeing what could be described as 'semantic creep'-timid, piecemeal and ad hoc adoption of parts of standards by groups that should be stridently taking a leadership role for the community. We suggest that, at this point, the primary hindrances to the creation of the SWLS may be social rather than technological in nature, and that, like the original Web, the establishment of the SWLS will depend primarily on the will and participation of its consumers.  相似文献   
99.
DNA error correcting codes over the edit metric consist of embeddable markers for sequencing projects that are tolerant of sequencing errors. When a genetic library has multiple sources for its sequences, use of embedded markers permit tracking of sequence origin. This study compares different methods for synthesizing DNA error correcting codes. A new code-finding technique called the salmon algorithm is introduced and used to improve the size of best known codes in five difficult cases of the problem, including the most studied case: length six, distance three codes. An updated table of the best known code sizes with 36 improved values, resulting from three different algorithms, is presented. Mathematical background results for the problem from multiple sources are summarized. A discussion of practical details that arise in application, including biological design and decoding, is also given in this study.  相似文献   
100.
The conversion of renewable cellulosic biomass is of considerable interest for the production of biofuels and materials. The bottleneck in the efficient conversion is the compactness and resistance of crystalline cellulose. Carbohydrate-binding modules (CBMs), which disrupt crystalline cellulose via non-hydrolytic mechanisms, are expected to overcome this bottleneck. However, the lack of convenient methods for quantitative analysis of the disruptive functions of CBMs have hindered systematic studies and molecular modifications. Here we established a practical and systematic platform for quantifying and comparing the non-hydrolytic disruptive activities of CBMs via the synergism of CBMs and a catalytic module within designed chimeric cellulase molecules. Bioinformatics and computational biology were also used to provide a deeper understanding. A convenient vector was constructed to serve as a cellulase matrix into which heterologous CBM sequences can be easily inserted. The resulting chimeric cellulases were suitable for studying disruptive functions, and their activities quantitatively reflected the disruptive functions of CBMs on crystalline cellulose. In addition, this cellulase matrix can be used to construct novel chimeric cellulases with high hydrolytic activities toward crystalline cellulose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号