首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29663篇
  免费   2888篇
  国内免费   2462篇
  35013篇
  2024年   100篇
  2023年   545篇
  2022年   584篇
  2021年   851篇
  2020年   1200篇
  2019年   1336篇
  2018年   1179篇
  2017年   1114篇
  2016年   1282篇
  2015年   1338篇
  2014年   1702篇
  2013年   2408篇
  2012年   1425篇
  2011年   1671篇
  2010年   1164篇
  2009年   1620篇
  2008年   1654篇
  2007年   1663篇
  2006年   1510篇
  2005年   1319篇
  2004年   1124篇
  2003年   1063篇
  2002年   1020篇
  2001年   801篇
  2000年   734篇
  1999年   571篇
  1998年   573篇
  1997年   482篇
  1996年   400篇
  1995年   426篇
  1994年   335篇
  1993年   283篇
  1992年   287篇
  1991年   197篇
  1990年   217篇
  1989年   177篇
  1988年   85篇
  1987年   88篇
  1986年   74篇
  1985年   59篇
  1984年   70篇
  1983年   44篇
  1982年   51篇
  1981年   34篇
  1980年   33篇
  1979年   40篇
  1978年   20篇
  1977年   15篇
  1976年   13篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
 Radiolytic reduction at 77 K of oxo-/hydroxo-bridged dinuclear iron(III) complexes in frozen solutions forms kinetically stabilized, mixed-valent species in high yields that model the mixed-valent sites of non-heme, diiron proteins. The mixed-valent species trapped at 77 K retain ligation geometry similar to the initial diferric clusters. The shapes of the mixed-valent EPR signals depend strongly on the bridging ligands. Spectra of the Fe(II)OFe(III) species reveal an S=1/2 ground state with small g-anisotropy as characterized by the uniaxial component (g z g av /2<0.03) observable at temperatures as high as ∼100 K. In contrast, hydroxo-bridged mixed-valent species are characterized by large g-anisotropy (g z g av /2>0.03) and are observable only below 30 K. Annealing at higher temperatures causes structural relaxation and changes in the EPR characteristics. EPR spectral properties allow the oxo- and hydroxo-bridged, mixed-valent diiron centers to be distinguished from each other and can help characterize the structure of mixed-valent centers in proteins. Received: 27 June 1998 / Accepted: 25 February 1999  相似文献   
22.
Species are generally described from morphological features, but there is growing recognition of sister forms that show substantial genetic differentiation without obvious morphological variation and may therefore be considered ‘cryptic species’. Here, we investigate the field vole (Microtus agrestis), a Eurasian mammal with little apparent morphological differentiation but which, on the basis of previous sex‐linked nuclear and mitochondrial DNA (mtDNA) analyses, is subdivided into a Northern and a Southern lineage, sufficiently divergent that they may represent two cryptic species. These earlier studies also provided limited evidence for two major mtDNA lineages within Iberia. In our present study, we extend these findings through a multilocus approach. We sampled 163 individuals from 46 localities, mainly in Iberia, and sequenced seven loci, maternally, paternally and biparentally inherited. Our results show that the mtDNA lineage identified in Portugal is indeed a distinct third lineage on the basis of other markers as well. In fact, multilocus coalescent‐based methods clearly support three separate evolutionary units that may represent cryptic species: Northern, Southern and Portuguese. Divergence among these units was inferred to have occurred during the last glacial period; the Portuguese lineage split occurred first (estimated at c. 70 000 bp ), and the Northern and Southern lineages separated at around the last glacial maximum (estimated at c. 18 500 bp ). Such recent formation of evolutionary units that might be considered species has repercussions in terms of understanding evolutionary processes and the diversity of small mammals in a European context.  相似文献   
23.
Understanding ectomycorrhizal fungal (EMF) community structure is limited by a lack of taxonomic resolution and autecological information. Rhizopogon vesiculosus and Rhizopogon vinicolor (Basidiomycota) are morphologically and genetically related species. They are dominant members of interior Douglas‐fir (Pseudotsuga menziesii var. glauca) EMF communities, but mechanisms leading to their coexistence are unknown. We investigated the microsite associations and foraging strategy of individual R. vesiculosus and R. vinicolor genets. Mycelia spatial patterns, pervasiveness and root colonization patterns of fungal genets were compared between Rhizopogon species and between xeric and mesic soil moisture regimes. Rhizopogon spp. mycelia were systematically excavated from the soil and identified using microsatellite DNA markers. Rhizopogon vesiculosus mycelia occurred at greater depth, were more spatially pervasive, and colonized more tree roots than R. vinicolor mycelia. Both species were frequently encountered in organic layers and between the interface of organic and mineral horizons. They were particularly abundant within microsites associated with soil moisture retention. The occurrence of R. vesiculosus shifted in the presence of R. vinicolor towards mineral soil horizons, where R. vinicolor was mostly absent. This suggests that competition and foraging strategy may contribute towards the vertical partitioning observed between these species. Rhizopogon vesiculosus and R. vinicolor mycelia systems occurred at greater mean depths and were more pervasive in mesic plots compared with xeric plots. The spatial continuity and number of trees colonized by genets of each species did not significantly differ between soil moisture regimes.  相似文献   
24.
Of two native Australian fishes naïve to the introduced toad Bufo marinus most barramundi Lates calcarifer rapidly learned to avoid B. marinus tadpoles, while sooty grunter Hephaestus fuliginosus exhibited considerable intraspecific variation in their learning ability. Some sooty grunter learned to avoid tadpoles after only a few attacks, while other individuals continued to attack and reject tadpoles throughout the entire laboratory trials. Individuals of both species recognized and avoided tadpoles 1 day after their previous encounter. None of the fishes died during the trials. The observed variation in behavioural responses of fishes to B. marinus may be due to differences in (1) learning ability, (2) fish hunger levels, and or (3) tadpole palatability and toxicity. The results demonstrate that most barramundi and sooty grunter learn to avoid B. marinus tadpoles with minimal trauma. Consequently, it is anticipated that the toads are unlikely to have a significant negative impact on wild populations of these fishes through direct toxic effects.  相似文献   
25.
Aim Data and analyses of elevational gradients in diversity have been central to the development and evaluation of a range of general theories of biodiversity. Elevational diversity patterns have, however, been severely understudied for microbes, which often represent decomposer subsystems. Consequently, generalities in the patterns of elevational diversity across different trophic levels remain poorly understood. Our aim was to examine elevational gradients in the diversity of macroinvertebrates, diatoms and bacteria along a stony stream that covered a large elevational gradient. Location Laojun Mountain, Yunnan province, China. Methods The sampling scheme included 26 sites spaced at elevational intervals of 89 m from 1820 to 4050 m elevation along a stony stream. Macroinvertebrate and diatom richness were determined based on the morphology of the specimens. Taxonomic richness for bacteria was quantified using a molecular fingerprinting method. Over 50 environmental variables were measured at each site to quantify environmental variables that could correlate with the patterns of diversity. We used eigenvector‐based spatial filters with multiple regressions to account for spatial autocorrelation. Results The bacterial richness followed an unexpected monotonic increase with elevation. Diatoms decreased monotonically, and macroinvertebrate richness showed a clear unimodal pattern with elevation. The unimodal richness pattern for macroinvertebrates was best explained by the mid‐domain effect (r2 = 0.72). The diatom richness was best explained by the variation in nutrient supply, and the increase in bacterial richness with elevation may be related to an increased carbon supply. Main conclusions We found contrasting patterns in elevational diversity among the three studied multi‐trophic groups comprising unicellular and multicellular aquatic taxa. We also found that there may be fundamental differences in the mechanisms underlying these species diversity patterns.  相似文献   
26.
Intensively sampled species abundance distributions (SADs) show left‐skew on a log scale. That is, there are too many rare species to fit a lognormal distribution. I propose that this log‐left‐skew might be a sampling artefact. Monte Carlo simulations show that taking progressively larger samples from a log‐unskewed distribution (such as the lognormal) causes log‐skew to decrease asymptotically (move towards ?∞) until it reaches the level of the underlying distribution (zero in this case). In contrast, accumulating certain types of repeated small samples results in a log‐skew that becomes progressively more log‐left‐skewed to a level well beyond the underlying distribution. These repeated samples correspond to samples from the same site over many years or from many sites in 1 year. Data from empirical datasets show that log‐skew generally goes from positive (right‐skewed) to negative (left‐skewed) as the number of temporally or spatially replicated samples increases. This suggests caution when interpreting log‐left‐skew as a pattern that needs biological interpretation.  相似文献   
27.
Microsatellite loci were isolated from Carnaby's black cockatoo (Calyptorhynchus latirostris: Aves), a highly valued, endangered, and endemic species of bird from Western Australia. This study describes three dinucleotide and one tetranucleotide microsatellite loci for which the primers produced clear and polymorphic amplification patterns with between two and nine alleles and moderate levels of variability. Two additional dinucleotide markers which were monomorphic in the Carnaby's cockatoo were able to amplify and were polymorphic in two other species of black cockatoo, greatly increasing the utility of these markers.  相似文献   
28.
We determined the species diversity, blood‐feeding behavior, and host preference of Anopheles mosquitoes in two malaria endemic areas of Tak (Mae Sot District) and Mae Hong Son (Sop Moei District) Provinces, located along the Thai border with Myanmar, during a consecutive two‐year period. Anopheline mosquitoes were collected using indoor and outdoor human‐landing captures and outdoor cow‐baited collections. Mosquitoes were initially identified using morphological characters, followed by the appropriate multiplex AS‐PCR assay for the identification of sibling species within Anopheles (Cellia) complexes and groups present. Real‐time PCR was performed for parasite‐specific detection in mosquitoes (Plasmodium spp. and Wuchereria bancrofti). A total of 7,129 Anopheles females were captured, 3,939 from Mae Sot and 3,190 from Sop Moei, with 58.6% and 37% of all anophelines identified as An. minimus, respectively. All three malaria vector complexes were detected in both areas. One species within the Minimus Complex (An. minimus) was present along with two related species in the Funestus Group, (An. aconitus, An. varuna), two species within the Dirus Complex (An. dirus, An. baimaii), and four species within the Maculatus Group (An. maculatus, An. sawadwongporni, An. pseudowillmori, and An. dravidicus). The trophic behavior of An. minimus, An. dirus, An. baimaii, An. maculatus, and An. sawadwongporni are described herein. The highest An. minimus densities were detected from February through April of both years. One specimen of An. minimus from Mae Sot was found positive for Plasmodium vivax.  相似文献   
29.
Aim During recent and future climate change, shifts in large‐scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress‐gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad‐scale environmental data. We evaluated the variation of species co‐occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates. Location Europe. Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co‐occurrence patterns. Results Correlation analyses supported the stress‐gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co‐occurrence patterns may play a major role. Main conclusions Our results demonstrate the importance of species co‐occurrence patterns for calibrating improved species distribution models for use in projections of climate effects. The correlation approach is able to localize European areas where inclusion of biotic predictors is effective. The climate‐induced spatial segregation of the major tree species could have ecological and economic consequences.  相似文献   
30.
Among the 19 non-native species of marine invertebrates which have invaded the Venice Lagoon and have established populations, Ruditapes philippinarum, deliberately introduced in 1983, is surely the most successful species. According to the hypothesis that alien species invasion could be favoured by an altered ecological, chemical or physical state of the system induced by anthropogenic disturbance, R. philippinarum turned out to be ‘the right species at the right moment’. By comparing historical data (1968, 1985, 1990) with 1999 data, changes in macrobenthic community, in particular bivalve molluscs, of the lagoon induced by R. philippinarum introduction and subsequent clam exploiting activity were assessed. It has been possible to describe a sharp reduction, both in terms of distribution area and density, of all other filter feeder bivalves. Moreover, by using the clearance rate of the most abundant bivalve species in 1990 and 1999 (Cerastoderma glaucum and R. philippinarum, respectively), it was possible to estimate that the filtration capacity, expressed as l h−1 m−2, has more than doubled. This has altered the functioning of the ecosystem, resulting in a stronger benthic–pelagic coupling. In this context, R. philippinarum attains control of the system. Considering all this, it is possible to state that the Venice Lagoon ecosystem has entered into a new state, probably more resistant but less resilient, with implications for future management choices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号